Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
NEUROPATÍA AUTONÓMICA CARDÍACA EN LA DIABETES MELLITUS TIPO II
Cureus 15(3):1-10
Difundido en siicsalud: 11 dic 2024
ROSUVASTATINA/EZETIMIBE FRENTE A ROSUVASTATINA EN DOSIS ALTA
Diabetes & Metabolism Journal 47(6):818-825
Difundido en siicsalud: 31 jul 2024

ALTERACIONES MOLECULARES DE LAS LESIONES TISULARES INDUCIDAS POR LA HIPERGLUCEMIA CRONICA

(especial para SIIC © Derechos reservados)
El conocimiento de los mecanismos bioquímicos que llevan a las complicaciones microvasculares y macrovasculares en la diabetes es útil para facilitar la selección y diseño de nuevas estrategias de prevención y tratamiento.
Autor:
Margarita Díaz flores
Columnista Experto de SIIC
Artículos publicados por Margarita Díaz flores
Coautores
Margarita Eugenia Gutiérrez Rodríguez* Clara Ortega Camarillo* Miguel Cruz* María Guadalupe Martínez Hernández** Luis Arturo Baiza Gutman** 
Instituto Mexicano del Seguro Social (IMSS), México DF, México*
Universidad Nacional Autónoma de México, México DF, México**
Recepción del artículo
1 de Noviembre, 2006
Aprobación
23 de Febrero, 2007
Primera edición
10 de Mayo, 2007
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La hiperglucemia crónica conduce a diversas complicaciones microvasculares y macrovasculares que dañan distintos órganos y son responsables de la morbimortalidad y el alto costo económico ocasionados por la diabetes mellitus. El propósito del presente trabajo es difundir el conocimiento de los mecanismos bioquímicos que llevan a estas complicaciones, para facilitar la selección y diseño de nuevas estrategias en su prevención y tratamiento. Cuando aumenta la concentración de glucosa ésta reacciona rápidamente con macromoléculas mediante un proceso no enzimático conocido como glucación; y su metabolismo favorece la acumulación de metabolitos como fructosa, sorbitol, triosas fosfato, diacilglicerol, glucosamina y N-acetilglucosamina, además de alterar la función del retículo endoplásmico y de las mitocondrias. El diacilglicerol y los α-oxoaldehídos derivan de las triosas fosfato, intermediarios de la glucólisis. El primero activa la proteína cinasa C y los segundos modifican la estructura y función de proteínas por tener una acción más potente que la glucosa. Estos eventos generan estrés oxidativo debido a la formación de especies reactivas de oxígeno y falla en los sistemas antioxidantes. Finalmente, todo implica alteraciones en la transducción de señales, activación de factores transcripcionales y cambios en la expresión genética causantes de los daños tisulares característicos de las complicaciones diabéticas.

Palabras clave
diabetes mellitus, AGE, estrés oxidativo, sorbitol, diacilglicerol, proteína cinasa C, hexosaminas, complicaciones crónicas


Artículo completo

(castellano)
Extensión:  +/-10.71 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Chronic hyperglycemia leads to diverse micro- and macrovascular complications that damage distant organs and are responsible for its related morbidity and mortality rates and high economic costs associated to diabetes mellitus. The aim of this study is to describe the biochemical mechanisms leading to these complications, in order to better select and design new strategies for their prevention and treatment. When the concentration of glucose is high it reacts faster with macromolecules through a non-enzymatic process known as glycation and its metabolism favors the accumulation of metabolites such as fructose, sorbitol, diacylglycerol, glucosamine and N-acetylglucosamine, in addition to altering the function of the endoplasmic reticulum and mitochondria. The diacylglycerol and the a-oxoaldehydes are derived from the triose phosphates, intermediaries of glycolysis. The first one activates protein kinase C and the second ones modify the structure and function of proteins by having a more potent glycating action than glucose. These events generate oxidative stress due to the formation of reactive oxygen species and to the failure of the anti- oxidative systems. Finally, all this induces changes in signal transduction and activation of transcriptional factors. It also modifies the expression of genes, causing the characteristic tissue damage often seen in diabetic complications.

Key words
diabetes mellitus, AGEs, RAGE, sorbitol, proteín kinase C, hexosamines, oxidative stress, chronic complications


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Bioquímica, Diabetología
Relacionadas: Diagnóstico por Laboratorio, Endocrinología y Metabolismo, Farmacología, Medicina Farmacéutica, Medicina Interna



Comprar este artículo
Extensión: 10.71 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Margarita Diaz Flores, Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades. CMN Siglo XXI, 06720, Av. Cuauhtemoc 330, Col. Doctores, México D.F., México
Bibliografía del artículo
1. Zimmet P, Alberti KGM, Shaw J. Global and societal implications of the epidemic. Nature 414:782-787, 2001.
2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year and projections for 2030. Diabetes Care 27:1047-1053, 2004.
3. Roglic G, Unwin N, King H y col. The burden of mortality attributable to diabetes. Diabetes Care 28:2130-2135, 2005.
4. Kahan R. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20:1183-1193, 1997.
5. Lebovitz HE. Type 2 diabetes: An overview. Clin Chem 45:1339-1345, 1999.
6. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414:813-820, 2001.
7. Thornally PJ, Jahan I, Ng R. Suppression of the accumulation of triosaphosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. J Biochem 129:543-549, 2001.
8. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Progress in Hormonal Research 56:1-21, 2001.
9. Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes and therapeutic options. Int Rev Neurobiol 50:37-57, 2002.
10. Gabay KH. Hyperglicaemia, Polyol metabolism, and complications of diabetes mellitus. Annu Rev Med 26:521-536, 1975.
11. Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266:4706-4712, 1991.
12. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 47:859-866, 1998.
13. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1-9, 1999.
14. Maritim AC, Sanders RA, Watkins JB 3ra. Diabetes, oxidative stress, and antioxidants: A review. J Biochem Mol Toxicol 17:24-38, 2003.
15. Turner R. The U.K. prospective diabetes study. A review. Diabetes Care 21:C35-C38, 1998.
16. Fore W. Noninsulin-dependent diabetes mellitus. The prevention of complications. Med Clin North Am 79:287-298, 1995.
17. American Diabetes Association. Consensus statement: role of cardiovascular risk factors in prevention and treatment of macro-vascular disease in diabetes. Diabetes Care 16:72-78, 1993.
18. Cai L, Kang YJ. Oxidative stress and diabetic cardiomyophaty: a brief review. Cardiovasc Toxicol 1:181-193, 2001.
19. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endotelial dysfunction in diabetes. Br J Pharmacol 130:963-974, 2000.
20. Morauski CJ, Skinner SL, Stubbs AJ. The renin-angiotensin system influences ocular endothelial cell proliferation in diabetes: transgenic and interventional studies. Am J Pathol 162:151-160, 2003.
21. Stitt A, Gardiner TA, Anderson NL y col. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51:2826-2832, 2002.
22. Kadoglou NP, Daskalopoulou SS, Perrea D, Liapis CD. Matrix metalloproteinase and diabetic vascular complications. Angiology 56:173-189, 2005.
23. Rahbar S. The discovery of glycated hemoglobin. A major event in the study of nonenzymatic chemistry in biological systems. Ann NY Acad Sci 1043:9-19, 2005.
24. Thornelly PJ. Dicarbonyl intermediates in the Maillard reaction. Ann NY Acad Sci 1043:111-117, 2005.
25. Monier VM, Mustata GT, Biemel KL, Reihl O, Ledered MO, Sell DR y col. Cross-linking of extracelular matrix by the Maillard reaction in aging and diabetes. An update on "a puzzle nearing resolution". Ann NY Acad Sci 1043:533-544, 2005.
26. Lapolla A, Fedele D, Tradi P. Glyco-oxidation in diabetes and related diseases. Clin Chim Acta 357:236-250, 2005.
27. Osawa T, Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann NY Acad Sci 1043:440-451, 2005.
28. Suzuki D, Toyuda M, Yagime M y col. Relationship between the expression of advanced glycation end-products (AGE) and the receptor for AGE (RAGE) mRNA in diabetic nephropathy. Intern Med 45:435-441, 2006.
29. Kim W, Hudson BI, Schmidt AM y col. Receptors for advanced glycation end products and its ligands: a journey from the complications of diabetes to its patogenesis. Ann NY Acad Sci 1043:553-561, 2005.
30. Forbes JM, Soldatos G, Thomas MC. Below the radar: advanced glycation end products that detour "around the side". Es HbA1c not an accurate enough predictor of long term progression and glycaemic control in diabetes. Clin Biochem Rev 26:123-134, 2005.
31. McRobert EA, Gallicchio M, Jerums G, Cooper ME, Bach LA. The amino-terminal domains of the ezrin, radixin, and moesin (ERM) proteins bind advanced glycation end products, an interaction that may play a role in the development of diabetic complications. J Biol Chem 278:25783-9, 2003.
32. Cipollone F, Lezzi A, Mezzetti A y col. The receptor RAGE as a progresión factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 108:1070-1077, 2003.
33. Yonekura H, Yamamoto Y, Yamamoto H y col. Novel splicing variants of the receptor for advanced glycation endproducts (RAGE) expressed in human vascular endotelial cells and prericytes, and their putative roles in diabetic-induced vascular injury. Biochem J 370:1097-1109, 2003.
34. Yamamoto Y, Doi T, Yamamoto H y col. Receptors for advanced glycation end products is a promising target of diabetic nephropathy. Ann NY Acad Sci 1043:562-566, 2005.
35. Thornalley PJ. The enzymatic defense against glycation in health, disease and therapeutics: A symposium to examine the concept. Biochem. Soc Trans 31:1441-1342, 2003.
36. Wu X, Monnier VM. Enzymatic deglycation of proteins. Arch Biochem Biophys 419:16-24, 2003.
37. Szwergold B. S. Intrinsic toxicity of glucose, due to non-enzymatic glycation, is controlled in-vivo by deglycation systems including: FN3K-mediated deglycation of fructosamines and transglycation of aldosamines. Med Hypot 65:337-348, 2005.
38. Babaei-Jadidi R, Karachalias N., Ahmed N., Bata S., Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52:2110-2120, 2003.
39. Hammes HP, Du X, Brownlee M y col. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents diabetic experimental retinophathy. Nat Med 9:294-299, 2003.
40. Beisswenger P, Ruggiero-Lopez D. Metformin inhibition of glication process. Diabetes Metab 29:6S95-103, 2003.
41. Hodgkinson AD, Sondergaard KL, Yang B, Cross DF, Mill ward BA, Demaine AG. Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy. Kitney Int 60:211-218, 2001.
42. Meister A. Biochemistry of glutathione. En Metabolism of sulfur compounds. De, D.M. Greenberg. Academic Press New York pp. 101-188, 1975.
43. Diplock AT. Antioxidants and free radical scavengers. En: Free radical damage and its control. Rice-Evans CA, Burdon RH. Elsevier Science LLM (Eds). Elsevier Science B. V. Edición Amsterdan 99 113-130, 1994.
44. Trueblood N, Ramasamy R. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol 275:H75-H83, 1998.
45. Gabay KH. Hyperglycemia, polyol metabolism, and complicantios of diabetes mellitus. N Engl J Med v521-536, 1975.
46. Fukase S, Sato S, Mori K, Secchi EF, Kador PF. Polyol pathway and NADPH-dependent reductases in dog leukocytes. J Diabetes Complications 10:304-313, 1996.
47. Knecht E, Roche E. The reduction-oxidation status may influence the degradation of glyceraldehyde-3-phosphate dehydrogenase. FEBS Lett 206:339-342, 1986.
48. Morgan PE, Dean RT, Davis MJ. Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack. Euro J Biochem 269:1916-1925, 2002.
49. Alexander MC, Lomato M, Nasrin N, Ramaika C. Insulin stimulates glyceraldehyde-3-phosphate dehydrogenase gene expressión through cis-acting DNA sequences. Proc Natl Acad Sci USA 85:5092-5096, 1988.
50. Novotny MV, Yancey MF, Yanuy MF, Stuart R, Weisler D, Peterson RG. Inhibition of glycolytic enzymes by endogenous aldehydes: a possible relation to diabetic neuropathies. Biochim Biophys Acta 1226:145-150, 1994.
51. Beisswenger PJ, Howell SK, Smith K, Szwergold BS. Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochim Biophys Acta 1637:98-106, 2003.
52. Burg M y Kador PF. Sorbitol, osmoregulation, and the complications of diabetes. J Clin Inv 81:635-640, 1988.
53. Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 13:23-30, 1999.
54. Naruse K, Nakamura J, Hotta N y col. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Exp Eye Res 71:309-315, 2000.
55. Jaspan JB, Towle VL, Maselli R, Herold K. Clinical studies with an aldose reductase inhibitor in the automatic and somatic neuropathies of diabetes. Metabolism 35:83-92, 1986.
56. Foppiano M, Lombardo G. Worldwide pharmacovigilance systems and tolrestat withdrawal. Lancet 349:399-400, 1997.
57. Davids J (Ed): Pfizer suspends zenarestat. Scrip 2584:24 (October 18 th), 2000.
58. Nigishi H, Toyota T, Sakamoto N. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy. Diabetes Care 24:1776-1782, 2001.
59. Koim-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED. High glucose-induced transforming growth factor beta 1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 101:160-169, 1998.
60. Du XL, Edelstein D, Brownlee M y col. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosilation. Proc Natl Acad Sci USA 97:12222-12226, 2000.
61. Gronning LM, Tingsabadh R, Ardí K, Dalew KT, Jat PS, Shepherd PR y col. Glucosa induces increases in levels of the transcriptional factor represor Id2 via the hexosamine pathway. Am J Physiol Endocrinol Metab 290:E599-E606, 2006.
62. Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 290:E1-E8, 2006.
63. Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: Signal transduction and O-GlcNAc. Science 291:2376-2378, 2001.
64. Goldberg HJ, Witheside CI, Hart GW, Fantus G. Posttranslational, reversible O-glycosilation is stimulated by high glucose and mediates plasminogen activator inhibitor-1 gene expression and Sp1 transcriptional activity in glomerular mesangial cells. Endocrinology 147:222-231, 2001.
65. Werstuck GH, Khan MI, Femia G, Kim AJ, Tedesco V, Trigatti B, Shi Y. Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model. Diabetes 55:93-101, 2006.
66. Ron D. Hyperhomocysteinemia and function of the endoplasmic reticulum. J Clin Invest 107:1221-1222, 2001.
67. Ozcan U, Cao Q, Hotamisligil GS y col. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457-461, 2004.
68. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 110: 1389-1398, 2002.
69. Kaufman RJ, Scheuner D, Arnold SM y col. The unfolded protein response in nutriet sensing and differentiation. Nat Rev Mol Cell Biol 3:411-421, 2002.
70. Kim AJ, Shi Y, Austin RC, Werstuck GH. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118:89-99, 2005.
71. Hossain GS, Van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia. J Biol Chem 278: 30317-30327, 2003.
72. Robertson LA, Klim AJ, Werstuck GH. Mechanisms linking diabetes mellitus to the development of atherosclerosis: a role for reticulum stress and glycogen synthase kinase-3. Can J Phisiol Pharmacol 84:39-48, 2006.
73. Ramana KV, Friedrich B, Tammali R, West MB, Bhatnagar A, Srivastava SK. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes 54:818-829, 2005.
74. Godbout JP, Pesavento J, Hartman ME, Manson SR, Freund GG. Methylglyoxal enhances cisplatin-induced cytotoxicity by activating protein kinase C delta. J Biol Chem 277:2554-2561, 2002.
75. Filippis A, Clark S, Proietto J. Increased flux through the hexosamine biosynthesis pathway inhibits glucose transport acutely by activation of protein kinase C. Biochem J 324:981-985, 1997.
76. Scivittaro V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activate protein kinase C-beta (11) in neonatal mesangial cells. Am J Physiol Renal Physiol 278:F676-F683, 2000.
77. Lindschau C, Quass P, Haller H y col. Glucose-induced TGF-beta 1 and TGF-beta receptor-1 expression in vascular smooth muscle cells is mediated by protein kinase C-alpha. Hypertension 42:335-341, 2003.
78. Xia L, Wang H, Goldberg HJ, Munk S, Fantus IG, Whiteside CI. Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am J Physiol Renal Physiol 290:F345-F356, 2006.
79. Inoguchi T, Li P, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939-1945, 2000.
80. Cardillo C, Campia U, Bryant MB, Panza JA. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 106:1783-1787, 2002.
81. Perfetto F, Tarquini R, Tapparini L, Tarquini B. Influence of non-insulin-dependent diabetes mellitus on plasma endothelin-1 levels in patients with advanced atherosclerosis. J Diabetes Complications 12:187-192, 1998.
82. Taylor I, Tennenbaum T, Kuroki T, Eldar-Finkelman H. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am J Physiol Endocrinol Metab 288:E405-E411, 2005.
83. Igarashi M, Wakasaki H, King GL y col.. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 103:185-195, 1999.
84. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol 265:E783-E793, 1993.
85. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100:115-126, 1997.
86. Stawowy P, Margeta C, Graf K y col. Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts. Cardiovascular Research 67:6-8, 2005.
87. Hayashida T, Schanaper HW. High ambient glucose enhances sensitivity to TGF-beta 1 via extracellular signal-regulated kinase and protein kinase C delta activities in human mesangial cells. J Am Soc Nephrol 15:2032-2041, 2004.
88. Park JY, Takahara N, King GL y col. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes 49:1239-1248, 2000.
89. Nonaka A, Kiryu J, Ogura Y y col. PKC-beta inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci 41:2702-2706, 2000.
90. Kelly DJ, Zhang Y, Gilbert RE y col. Protein kinase C beta inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 52:512-518, 2003.
91. Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci 103:311-321, 2002.
92. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Creager MA. Inhibition of Protein Kinase Cß Prevents Impaired Endothelium-Dependent Vasodilation Caused by Hyperglycemia in Humans. Circ Res 90:107-111, 2002.
93. Aiello LP, Clermont A, Arora V, Davis MD, Sheetz MJ, Bursell SE. Inhibition of PKC beta by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest Ophthalmol Vis Sci 47:86-92, 2006.
94. Nishikawa T, Edelstein D, Brownlee M y col. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787-790, 2000.
95. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress Toxicol Appl Pharmacol 212:167-178, 2006.
96. Brownlee M. The pathobiology of diabetic complications. A Unifying mechanism. Diabetes 54, 1615-1625, 2005.
97. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Feldman EL y col. High glucose induced oxidative stress and mitochondrial dysfunction in neurons. FASEB Journal 16:1738-1748, 2002.
98. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci 103:2653-2658, 2006.
99. McLennan SV, Wang XY, Moreno V, Yue DK, Twigg SM. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinases type 1: implications for diabetic nephropathy. Endocrinology 145:5646-5655, 2004.
100. Xia L, Wang H, Goldberg HJ, Munk S, Fantus IG, Witheside CI. Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am J Physiol Renal Physiol 290:F345-F356, 2006.
101. Yamagishi S, Matsui T, Nakamura K, Takeuchi M. Minodronate, a nitrogen-containing bisphosphonate, inhibits advanced glycation end product-induced vascular cell adhesión molecule-1 expression in endotelial cells by supressing reactive oxygen species generation. Int J Tissue React 27:189-195, 2005.
102. Yamaghishi S, Nakamura K, Matsui T, Takeuchi M. Minodronate, a nitrogen-containing bisphosphonate, is a promising remedy for treating patients with diabetic retinophaty. Med Hypot 66:273-275, 2006.
103. Díaz Flores M, Ibáñez Hernández MA, Baiza Gutman LA y col. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP(+) ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Life Sciences 78; 2601-2607, 2006.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
Artículos relacionadosMás relacionadosAtículos relacionados
EFICACIA COMPARADA DE LOS INHIBIDORES DEL COTRANSPORTADOR DE SODIO/GLUCOSA TIPO 2
World Journal of Diabetes 15(3):463-474
Difundido en siicsalud: 23 jul 2024
ua31618
Inicio/Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008