Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
MEDICIÓN Y MONITORIZACIÓN DE LA PRESIÓN ARTERIAL
Journal of Hypertension 41(12):1874-2071
Difundido en siicsalud: 16 dic 2024
NEUROPATÍA AUTONÓMICA CARDÍACA EN LA DIABETES MELLITUS TIPO II
Cureus 15(3):1-10
Difundido en siicsalud: 11 dic 2024

RELACION ENTRE EL SISTEMA DE LAS QUININAS Y LAS ENFERMEDADES CARDIOVASCULARES

(especial para SIIC © Derechos reservados)
El presente estudio describe el papel de los componentes del sistema calicreína-quinina en pacientes de Kuwait que padecen hipertensión, diabetes y otras alteraciones cardiovasculares.
sharma9.jpg Autor:
Jagdish n. Sharma
Columnista Experto de SIIC

Institución:
Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Centre, Kuwait University


Artículos publicados por Jagdish n. Sharma
Recepción del artículo
9 de Marzo, 2006
Aprobación
20 de Marzo, 2006
Primera edición
18 de Agosto, 2006
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Las enfermedades cardiovasculares son la causa más frecuente de muerte en todo el mundo. En Kuwait, la muerte relacionada a enfermedades cardiovasculares puede llegar al 40%. De este modo, será la mayor carga para el sistema de salud del siglo XXI. La hipertensión y la diabetes son los dos factores de riesgo mayores en la producción de hipertrofia cardíaca, cardiopatía isquémica, insuficiencia cardíaca, arritmias cardíacas e infarto de miocardio. Los componentes del sistema calicreína-quinina (quininógenos plasmáticos y urinarios, calicreínas, quininasas y quininas) regulan la PA y los niveles de glucosa sanguínea mediante estimulación de la vasodilatación, efectos natriuréticos y metabolismo de la glucosa. Esos componentes se localizan en el tejido cardíaco, riñón y células musculares lisas. El sistema quinina se encuentra deprimido anormalmente en varios modelos animales experimentales de hipertensión y diabetes que podrían ser responsables de la aparición de complicaciones cardíacas. Se ha señalado que el hallar un compuesto con actividad renal similar a la calicreína puede ser útil al propósito de excretar el exceso de sodio por el riñón en el tratamiento de la hipertensión. También se demostró que los ratones transgénicos que sobreexpresan calicreína por el tejido renal eran hipotensos y que la administración de aprotinina, un inhibidor de la calicreína tisular, restaura la PA de los ratones transgénicos. Esos hallazgos realzaron el papel de la calicreína tisular en la regulación de la PA. Se ha propuesto que el gen de la calicreína tisular entregado en varios modelos de hipertensión ejerce protección, como reducción de la PA aumentada, atenuación de la hipertrofia cardíaca, inhibición de la estenosis y del daño renal. Esto puede indicar la posibilidad de este tratamiento con gen de calicreína para trastronos cardiovasculares. Varios informes indican que la excreción urinaria de calicreína está disminuida en la hipertensión esencial en humanos y en modelos de hipertensión experimental. De este modo, la reducción de la calicreína urinaria puede reflejar una deficiencia en el sistema vasodilatador endógeno calicreína /quinina que contribuye a la patogénesis de la hipertensión. Algunos estudios previos realizados en la población blanca y negra en los EE.UU. demostraron que la excreción urinaria de calicreína está disminuida en miembros familiares con riesgo de hipertensión hereditaria (esencial) y que la calicreína urinaria es uno de los mayores marcadores genéticos asociado con historia familiar de hipertensión. También se informó la existencia de unión genética entre el locus de la calicreína y la presión sanguínea, en ratas. Algunos estudios sugirieron que la excreción urinaria disminuida de calicreína se asocia con sensibilidad de la presión sanguínea a la sal. La excreción de calicreína también está disminuida en afroamericanos y la deficiencia del sistema renal vasodilatador de calicreína-quinina puede explicar muchas de las características singulares de la hipertensión y de las enfermedades cardíacas en algunos sujetos de rarza negra.

Palabras clave
Calicreína, quinina, bradiquinina, hipertensión, diabetes, hipertrofia cardíaca, enfermedades cardiovasculares


Artículo completo

(castellano)
Extensión:  +/-12.05 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Cardiovascular diseases are the most common cause of death worldwide. In Kuwait, death related to cardio vascular diseases may account for about 40%. Thus, it will be the greatest health care burden of the twenty-first century. Hypertension and diabetes are the two major risk factors in the development of cardiac hypertrophy, ischemic heart disease, cardiac failure, cardiac arrhythmias and myocardial infarction. The kallikrein-kinin components (plasma and urinary kininogens, kallikreins, kininases and kinins) are able to regulate BP and blood glucose levels via promoting; vasodilator, natriuretic effects and glucose metabolism. These components are located in the cardiac tissue, kidney and vascular smooth muscle. The kinin system is found to be abnormally depressed in various experimental animal models of hypertension and diabetes which might be responsible for inducing cardiac complications. It has been pointed out that the development of a compound having renal kallikrein-like activity may serve the purpose of excreting excessive sodium from the kidney in the treatment of hypertension. Also it has been demonstrated that transgenic mice over-expressing renal tissue kallikrein were hypotensive and that administration of aprotinin, a tissue kallikrein inhibitor, restored the BP of the transgenic mice. These findings highlight a role of tissue kallikrein in the regulation of BP. It has been proposed that tissue kallikrein gene delivery into various hypertensive models exhibits protection, such as reduction in high BP, attenuation of cardiac hypertrophy, inhibition of renal damage and stenosis. This may indicate the prospect of this kallikrein gene therapy for cardiovascular pathology. Several reports indicate that urinary kallikrein excretion is decreased in essential hypertension in humans and in models of experimental hypertension. Thus, reduced urinary kallikrein may reflect a deficiency in the endogenous kallikrein/kinin vasodilatory system that contributes to the pathogenesis of hypertension. Previous studies conducted in white and black population in the USA demonstrated that urinary kallikrein excretion is diminished in family members at risk for hereditary (essential) hypertension and that urinary kallikrein is one of the major genetic markers associated with family history of hypertension. Also evidence for genetic linkage between the kallikrein locus and blood pressure has been reported in the rat. Previous studies have suggested that diminished urinary kallikrein excretion is associated with salt sensitivity of blood pressure. Kallikrein excretion is also diminished in African-Americans and deficiency of the kallikrein-kinin renal vasodilatory system may explain many of the unique features of essential hypertension and heart diseases in some black subjects.

Key words
Kallikrein, kinin, bradykinin, hypertension, diabetes, cardiac hypertrophy, cardiac diseases


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Cardiología
Relacionadas: Bioquímica, Medicina Interna



Comprar este artículo
Extensión: 12.05 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Jagdish N. Sharma, Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Centre, Kuwait University, 13110, PO Box 24923, Safat, Kuwait
Bibliografía del artículo
1. Abdella N, Arouj M Al, Nakhi A Al, et al. Non-insulin-dependent diabetes in Kuwait:prevalence rates and associated risk factors. Diabetes Research and Clinical Practice 1998; 42:187-196.
2. Sharma JN. The tissue kallikrein-kininogen-kinin pathways:role in cardiovascular system. Arch Med Res 2005; in press.
3. Sharma JN. Does the kinin system mediate in cardiovascular abnormalities? An overview. J Clin Pharmacol 2003; 43:1187-95.
4. Sharma JN, Sharma J. Cardiovascular properties of the kallikrein-kinin system. Curr Med Res Opin 2002; 18:10-17.
5. Sharma JN. Contribution of kinin system to the antihypertensive action of angiotensin converting enzyme inhibitors. Adv Exp Med Biol 1989; 247A:197-205.
6. Sharma JN. Role of tissue kallikrein-kininogen-kinin pathways in the cardiovascular system. Archives of Medical Research 2006; 37(3):299-306.
7. Sharma JN, Uma K. Effect of captopril on urinary kallikrein, blood pressure and myocardial hypertrophy in diabetic spontaneously hypertensive rats. Pharmacology 2002; 64:196-200.
8. Sharma JN. Involvement of the kinin-forming system in physiopathology of rheumatoid inflammation. Agents Actions 1992; 38 (III):343-361.
9. Sharma JN, Buchanan WW. Pathogenic responses of bradykinin system in chronic inflammatory rheumatoid disease. Exp Toxicol Pathol 1994; 46:421-433.
10. Nagayasu T, Nagasawa S. Studies of human kininogen. Isolation, characterization, and cleavage by plasma kallikrein of high molecular weight (HMW) kininogen. J Biochem 1979; 85:249-258.
11. Leeb-Lundberg LM, Marceau F, Muller-Esterl W, et al. Classification of the kinin receptor family:from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57(1):27-77.
12. Sharma JN. Therapeutic prospects of bradykinin antagonists. Gen Pharmacol 1993; 24:267-274.
13. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992; 44(1):1-80.
14. Moreau ME, Garbacki N, Molinaro G, et al. The kallikrein-kinin system:current and future pharmacological targets. J Pharmacol Sci 2005; 99:6-38.
15. Weiss AS, Gallin JL, Kaplan AP. Flecher factor deficiency:a diminished rate of Hageman factor activation caused by absence of prekallikrein with abnormalities of coagulation, fibrinolysis, chemotactic activity and kinin generation. J Clin Invest 1974; 53:622-633.
16. Cochrane CG, Revak SD, Wuepper KD. Activation of Hageman factor in solid liquid faces. A critical role of kallikrein. J Exp Med 1973; 138:1564-1583.
17. Motta G, Rojkjaer R, Hasan AAK et al. High molecular weight kininogens regulates prekallikrein assembly and activation on endothelial cells:a novel mechanism for contact activation. Blood 1998; 91:516-528.
18. Shariat-Madar Z, Mahdi F, Schmaier AH et al. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 2002; 277:I7962-I7969.
19. Griffin JH, Cochrane CG. Human factor XII (Hageman factor). Methods Enzymol 1976; 45:56-65.
20. Thompson RE, Mandle R Jr, Kaplan AP. Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest 1977; 60(6):1376-80.
21. Silverberg M, Diehl SV. The autoactivation of factor XII (Hageman factor) induced by low-Mr heparin and dextran sulphate. The effect of the Mr of the activating polyanion. Biochem J 1987; 248(3):715-20.
22. Woolly-Miller C, Chao J, Chao L. Restriction fragment length polymorphism's mapped in spontaneously hypertensive rats using kallikrein probs. J Hypertension 1989; 7:865-871.
23. Pravence M, Ken V, Kunes J. Cosegregation of blood pressure with kallikrein gene family polymorphism. Hypertension 1991; 17:242-246.
24. Erdos EG. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K Dhal memorial lecture. Hypertension; 1990; 16(4):363-370.
25. Farmer SG, Burch RM. Biochemical and molecular pharmacology of kinin receptors. Ann Rev Pharmacol Toxicol 1992; 32:511-536.
26. Burch RM. Kinin signal transduction:role of phosphoinositides and eicosanoids. J Cardiov Pharmacol 1990; 15 (Suppl. 6):S44-S46.
27. Akbar A, Sharma JN, Yusof APM. Potentiation of bradykinin-induced responses in the intact and denuded epithelium of guinea pig tracheal preparations. Tissue Reactions 1998; XX:95-100.
28. Schini VB, Boulanger C, Regol D et al. Bradykinin stimulates the production of cyclicGMP via activation of B2 receptors in cultured porcine aortic endothelial cells. J Pharmacol Expl Ther 1990; 43:1823-1827.
29. Jaffa AA, Miller DH, Bailey GS et al. Abnormal regulation of renal kallikrein in experimental diabetes. J Clin Invest 1987; 80:1651-1659.
30. Jaffa AA, Rust PF, Mayfield RK. Kinin, a mediator of diabetes induced glomerular hyper filtration. Diabetes 1995; 44:156-160.
31. Harvey JN, Jaffa AA, Margolius HS. Renal kallikrein abnormalities of diabetic kidney. Diabetes 1990; 39:299-303.
32. Platts JK, Meadows P, Harvey JN. The relationship between urinary kallikrein and glomerular filtration rate (GFR) in type-1 diabetes: studies with lithium. Immunopharmacol 1996; 33:351-353.
33. Tschope G, Gavriluk V, Reinecke A. Bradykinin excretion is increased in severely hyperglycemic streptozotocin-diabetic rats. Immunopharmacol 1996; 33:344-348.
34. Vieira MAR, Moreira FM, Maack T. Conversion of T-kinin to bradykinin by the rat kidney. Biochem Pharmacol 1994; 47:1693-1699.
35. Sharma JN, Uma K. Cardiac kallikrein in hypertensive and normotensive rats with and without diabetes. Immunopharmacology 1996; 33:341-343.
36. Sharma JN, Uma K, Yusof APM. Left ventricular hypertrophy and its relation to cardiac kinin-forming system in hypertensive and diabetic rats. Int J Cardiol 1998; 63:229-235.
37. Sharma JN, Uma K, Yusof APM. Altered cardiac tissue and plasma kininogen levels in hypertensive and diabetic rats. Immunopharmacol 1999; 43:129-132.
38. Tshope C, Reinecke A, Seidl U et al. Functional, biochemical, and molecular investigations of renal kallikrein-kinin system in diabetic rats. Am J Physiol 1999; 277:H2333-2340.
39. Jaffa AA, Durazo-Arvizu R, Zheng D et al. Plasma prekallikrein:a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes 2003; 52(5):1215-21.
40. Nolly HL, Britos J. Kinin-forming enzyme in rat cardiac tissue. Amer J Physiol 1981; 265:H-1209-H1214
41. Nolly HL, Carretero OA, Sclicli AG. Kallikrein release by vascular tissue. Amer J Physiol 1993; 265:H1209-H1214.
42. Vegh A, Szekeres L, Parratt RJ. Local intracoronary infusions of bradykinin profoundly reduce the severity of ischemia-induced arrhythmia in anaesthetized dogs. Brit J Pharmacol 1991; 104:294-295.
43. Linz W, Wiemer G, Scholkens BA. Bradykinin prevents left ventricular hypertrophy in rats. J Hypertension 1993; 11(Suppl. 5):S96-S97.
44. Vegh A, Rapp JG, Parratt JR. Attenuation of the antiarrhythmic effects of ischemia preconditioning by blocked of bradykinin B2 receptors. Brit J Pharmacol 1994; 107:1167-1172.
45. Walls TM, Sheehy R, Hartman JC. Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 1994; 270:681-689.
46. Sharma JN, Fernandez PG, Laher I. Differential sensitivity of Dahl salt-sensitive and salt-resistant rats to the hypotensive action of acute nifedipine administration. Canad J Physiol Pharmacol 1984a; 62:241-243.
47. Sharma JN. Interrelationship between the kallikrein-kinin system and hypertension: a review. Gen Pharmacol 1988; 19(2):177-87.
48. Sharma JN. The kinin system and prostaglandins in the intestine. Pharmacol Toxicol 1988; 63(5):310-6.
49. Sharma JN. Does kinin mediate the hypotensive action of angiotensin converting enzyme (ACE) inhibitors? Gen Pharmacol 1990; 21(4):451-457.
50. Sharma JN, Uma K, Noor AR. Blood pressure regulation by the kallikrein-kinin system. Gen Pharmacol 1996; 27:55-63.
51. De Freitas FM, Farraco EZ, De Azevedo DF. General circulatory alterations induced by intravenous infusion of synthetic bradykinin in man. Circulation 1964; 29:66-70.
52. Adetuyibi A, Mills IH. Relationship between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet 1972; 2:203-207.
53. Mills IH. The renal kallikrein-kinin system and sodium excretion. Quart J Exp Physiol 1982; 23:175-180.
54. Webster ME, Gilmore JP. Influence of kallidin-10 on renal function. Amer J Physiol 1964; 206:714-718.
55. McGiff JC, Itskovitz HD. Terrango NA. The action of bradykinin and eledoicin in the canine isolated kidney:a relationship to prostaglandins. Clin Sci Molec Med 1975; 49:125-131.
56. Margolius HS, Geller R, Pisano JJ. Altered urinary kallikrein excretion in human hypertension. Lancet 1971; 2:1063-1065.
57. Margolius HS, Geller R, DeJong W. Altered urinary kallikrein excretion in rats. Hypertension Cir Res 1972; 30:358-362.
58. Margolius HS, Horwwitz D, Pisano JJ. Urinary kallikrein excretion in hypertensive man:relationship to sodium intake and sodium-retaining steroids. Circ Res 1974; 35:820-825.
59. Almeida FA, Stella RCR, Voos A. Malignant hypertension:a syndrome associated with low plasma kininogen and kinin potentiating factor. Hypertension 1981; 3:46-50.
60. Sharma JN, Zeitlin IJ. Altered plasma kininogen in clinical hypertension. Lancet 1981; 1:125-126.
61. James FW, Donaldson VH. Decreased exercise tolerance and hypertension in severe hereditary deficiency of plasma kininogens. Lancet 1981; 1:889.
62. Mohsin SSJ, Majima M, Katori M. Important suppressive roles of the kallikrein-kinin system during the developmental stage of hypertension in spontaneously hypertensive rats. Asia Pacific J Pharmacol 1992; 7:73-82.
63. Katori M, Majima M. Role of the renal kallikrein-kinin system in the development of hypertension. Immunopharmacol 1997; 36:237-242.
64. Wang C, Chao L, Chao J. Human tissue kallikrein induces hypotension in transgenic mice. Hypertension 1994; 23:236-243.
65. Sharma JN, Amrah SS, Noor AR. Suppression of hypotensive responses of captopril and enalapril by kallikrein inhibitor aprotinin in spontaneously hypertensive rats. Pharmacology 1995; 50:363-369.
66. Chao J, Chao L. Kallikrein gene therapy in hypertension, cardiovascular and renal diseases. Gen Ther Mol Biol 1998; 1:301-308.
67. Antonacio M. Angiotensin converting enzyme (ACE) inhibitors. Annu Rev Pharmacol Toxicol 1982; 22:57-87.
68. Silberbauer K, Stanek B, Temple H. Acute hypotensive effect of captopril in man modified by prostaglandin synthesis inhibition. Brit J Clin Pharmacol 1982; 14:87S-93S.
69. Sharma JN, Fernandez PG, Kim BK. Cardiac regression and blood pressure control in Dahl rats treated with enalapril maleate (MK 421), an angiotensin converting enzyme inhibitor. J Hypertension 1983; 1:251-256.
70. Edery H, Rosenthal T, Amitzur G. The influence of SQ 20881 on the blood kinin system of renal hypertensive patients. Drug Exp Clin Res 1981; VII:749-756.
71. Sharma JN, Fernandez PG, Kim BK. Systolic blood pressure responses to enalapril maleate (MK 421), an angiotensin converting enzyme inhibitor, and hydrochlorothiazide in conscious Dahl salt-sensitive (S) and salt-resistant (R) rats. Canad J Physiol Pharmacol 1984b; 62:846-849.
72. Smith C, Campbell S, Albano J. Urinary kallikrein excretion in normotensive and hypertensive pregnancies: 8 years later. Immunopharmacol 1999; 44:177-182.
73. Regoli D. Neurohumoral regulation of precapillary vessels: the kallikrein-kinin system. J Cardiovasc Pharmacol 1984; 6 (suppl. 3):S401-S412.
74. Sharma JN, Stewart JM, Mohsin SS et al. Influence of a kinin antagonist on acute hypotensive responses induced by bradykinin and captopril in spontaneously hypertensive rats. Agents Actions Suppl 1992; 38:258-69.
75. Braunwald E. Cardiovascular medicine a turn of the millennium:triumphs, concern and opportunities. New Eng J Med 1997; 337:1360-1369.
76. Locherner W, Parratt JR. A comparison of the effects of locally and systemically administration of kinin on coronary blood flow and myocardial metabolism. Br J Pharmacol Chemother 1966; 26:17-26.
77. Linz W, Wiemer G, Scholkens BA. Contribution of kinins to the cardiovascular action of converting-enzyme inhibitors. Pharmacol Rev 1995; 47:25-50.
78. Zhu P, Zugga CE, Simper D. Bradykinin improves post-ischemic recovery in that rat heart:role of high energy phosphate, nitric oxide and prostacyclin. Carnivals Res 1995; 29:658-663.
79. Madeddu P, Milia AF, Salis MB. Renovascular hypertension in bradykinin B2 receptor knockout mice. Hypertension 1998; 23:503-509.
80. Kichuck MR, Seyedi N, Zhang X. Regulation of nitric oxide production in human coronary micro vessels and the contribution of local kinin formation. Circulation 1996; 94:44-51.
81. Cheng CP, Onishi K, Ohte N. Functional effects of endogenous bradykinin in congestive heart failure. Amer J Coll Cardiol 1998; 31:1679-1686.
82. Koide A, Zeitlin IJ, Parratt JR. Kinin formation in ischemic heart and aorta of anaesthetized rats. J Physiol 1993; 467:125P.
83. Linz W, Wiemer G, Scholkens BA. Bradykinin prevents left ventricular hypertrophy in rats. J Hypertension 1993; 11(Suppl. 5):S96-S97.
84. Hashimto K, Hamamoto H, Honda Y. Changes in components of the kinin system and hemodynamics in acute myocardial infarction. Amer Heart J 1978; 95:619-626.
85. Scholkens BA. Kinins in the cardiovascular system. Immunopharmacol 1996; 33:209-217.
86. Rubin LE, Levi R. Protective role of bradykinin in cardiac anaphylaxis. Circ Res 1995; 76:434-440.
87. Abbas SA, Sharma JN, Yusof APM. Effect of bradykinin and its antagonist on survival time after coronary artery occlusion in rats. General Pharmacol 1999a; 33:243-247.
88. Abbas SA, Sharma JN, Yusof APM. The effect of bradykinin and its antagonist on survival time after coronary artery occlusion in hypertensive rats. Immunopharmacol 1999b; 44:93-98.

 
 
 
 
 
 
Clasificado en
Artículos originales>
Expertos del Mundo

Especialidad principal:
Cardiología


Relacionadas:
Bioquímica
Medicina Interna
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
Artículos relacionadosMás relacionadosAtículos relacionados
AMLODIPINA PARA EL TRATAMIENTO DE LA HIPERTENSIÓN EN PACIENTES INTERNADOS
Pragmatic and Observational Research 15:121-137
Difundido en siicsalud: 11 dic 2024
PROYECCIÓN DE LA SALUD CARDIOVASCULAR HASTA 2050
Circulation 150(4):65-88
Difundido en siicsalud: 5 dic 2024
ua31618
Inicio/Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008