PATOGENIA GENETICA DEL CANCER COLORRECTAL. ACTUALIZACION

(especial para SIIC © Derechos reservados)
En esta revisión se destacan los avances más recientes en relación con la patogenia genética del cáncer colorrectal y la importancia de la inestabilidad cromosómica.
lynch9.jpg Autor:
John Lynch
Columnista Experto de SIIC

Institución:
Division of Gastroenterology University of Philadelphia


Artículos publicados por John Lynch
Recepción del artículo
20 de Diciembre, 2004
Aprobación
28 de Diciembre, 2004
Primera edición
6 de Febrero, 2005
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
El cáncer de colon es una causa significativa de morbilidad y mortalidad en todo el mundo. Los avances realizados durante los últimos años han mejorado nuestra comprensión sobre los mecanismos que gobiernan la carcinogénesis colorrectal y han comenzado a influir en el cuidado de los pacientes. Durante mucho tiempo se creyó que la progresión del epitelio normal del colon hacia el cáncer es, en cada caso, un proceso escalonado en el cual se pueden identificar marcadores patológicos y moleculares específicos para el estudio y el tratamiento clínico. Aunque para nosotros esta hipótesis es fundamental, en los últimos años ha habido una mayor apreciación de las diferencias entre los cánceres de colon individuales. En particular, el pensamiento actual sugiere que existen seis características cardinales que las células neoplásicas comparten, aunque los mecanismos por los cuales se adquieren pueden variar en forma considerable. Más notablemente, la inestabilidad genética parece ser de importancia fundamental para este proceso, lo que provee un ambiente adecuado para el surgimiento de estas características. Se ha avanzado en la comprensión de la génesis de la inestabilidad cromosómica (INC), la de tipo microsatelital (INM), la epigenética, así como en las mutaciones resultantes de los defectos en la escisión y reparación de las bases. Esta revisión destaca varios de los avances recientes más significativos en la carcinogénesis colorrectal, con énfasis en los mecanismos promotores de la inestabilidad genética.

Palabras clave
Cáncer de colon, inestabilidad genética, inestabilidad cromosómica, poliposis adenomatosa familiar, reparación y escisión de bases


Artículo completo

(castellano)
Extensión:  +/-12.05 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Colon cancer remains a significant cause of morbidity and mortality world-wide. Advances in the last few years have improved our understanding of the mechanisms governing colorectal carcinogenesis and have begun to impact patient care. It has long been believed that the progression from normal colonic epithelium to colon cancer is in every case a step-wise process in which specific pathologic and molecular markers can be identified for study and clinical therapy. While this hypothesis remains central to our understanding, in the past few years there has been a greater appreciation of the differences between individual colon cancers. In particular, current thinking suggests there are six cardinal features neoplastic cells share in common, however the mechanisms by which they are acquired by cells can vary considerably. Most notably, genetic instability appears to be critically important to this process, providing an appropriate environment in which these cardinal features arise. Progress has been made in understanding the genesis of chromosomal instability (CIN), microsatellite instability (MIN), epigenetic instability, as well as the mutations resulting from base excision-repair defects. This review highlights several of the more significant recent advances in colorectal carcinogenesis, with an emphasis on mechanisms promoting genetic instability.

Key words
Colon cancer, genetic instability, chromosomal instability, familial adenomatosis polyposis, base excision-repair


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Gastroenterología, Genética Humana, Oncología
Relacionadas: Diagnóstico por Laboratorio, Gastroenterología, Genética Humana, Medicina Interna, Oncología



Comprar este artículo
Extensión: 12.05 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Bibliografía del artículo
  1. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer 2001; 37 Suppl 8:S4-66.
  2. Lynch JP, Hoops TC. The Genetic Pathogenesis of Colorectal Cancer. Hematology - Oncology Clinics of North America 2002; 16(4):1-36.
  3. Meyskens FL, Jr. Chemoprevention of FAP with sulindac. Curr Oncol Rep 2002; 4(6):463.
  4. Phillips RK, Wallace MH, Lynch PM, Hawk E, Gordon GB, Saunders BP, et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 2002; 50(6):857-60.
  5. Asano TK, McLeod RS. Non steroidal anti-inflammatory drugs (NSAID) and Aspirin for preventing colorectal adenomas and carcinomas. Cochrane Database Syst Rev 2004(2):CD004079.
  6. Sampson JR, Dolwani S, Jones S, Eccles D, Ellis A, Evans DG, et al. Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 2003; 362(9377):39-41.
  7. Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C-->T:A mutations. Hum Mol Genet 2002; 11(23):2961-7.
  8. Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RK, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 2003; 348(9):791-9.
  9. Halford SE, Rowan AJ, Lipton L, Sieber OM, Pack K, Thomas HJ, et al. Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am J Pathol 2003; 162(5):1545-8.
  10. Pineau BC, Paskett ED, Chen GJ, Espeland MA, Phillips K, Han JP, et al. Virtual colonoscopy using oral contrast compared with colonoscopy for the detection of patients with colorectal polyps. Gastroenterology 2003; 125(2):304-10.
  11. Mak T, Lalloo F, Evans DG, Hill J. Molecular stool screening for colorectal cancer. Br J Surg 2004; 91(7):790-800.
  12. Diaz-Rubio E. New chemotherapeutic advances in pancreatic, colorectal, and gastric cancers. Oncologist 2004; 9(3):282-94.
  13. Kim EC, Lance P. Colorectal polyps and their relationship to cancer. Gastroenterol Clin North Am 1997; 26(1):1-17.
  14. Carethers JM. The cellular and molecular pathogenesis of colorectal cancer. Gastroenterol Clin North Am 1996; 25(4):737-54.
  15. Winawer SJ, Zauber AG, Ho MN, O'Brien MJ, Gottlieb LS, Sternberg SS, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 1993; 329(27):1977-81.
  16. Winawer SJ, Zauber AG, O'Brien MJ, Gottlieb LS, Sternberg SS, Stewart ET, et al. The National Polyp Study. Design, methods, and characteristics of patients with newly diagnosed polyps. The National Polyp Study Workgroup. Cancer 1992; 70(5 Suppl):1236-45.
  17. Takayama T, Katsuki S, Takahashi Y, Ohi M, Nojiri S, Sakamaki S, et al. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med 1998; 339(18):1277-84.
  18. Roncucci L, Pedroni M, Vaccina F, Benatti P, Marzona L, De Pol A. Aberrant crypt foci in colorectal carcinogenesis. Cell and crypt dynamics. Cell Prolif 2000; 33(1):1-18.
  19. Tudek B, Bird RP, Bruce WR. Foci of aberrant crypts in the colons of mice and rats exposed to carcinogens associated with foods. Cancer Res 1989; 49(5):1236-40.
  20. Nucci MR, Robinson CR, Longo P, Campbell P, Hamilton SR. Phenotypic and genotypic characteristics of aberrant crypt foci in human colorectal mucosa. Hum Pathol 1997; 28(12):1396-407.
  21. Siu IM, Pretlow TG, Amini SB, Pretlow TP. Identification of dysplasia in human colonic aberrant crypt foci. Am J Pathol 1997; 150(5):1805-13.
  22. Heinen CD, Shivapurkar N, Tang Z, Groden J, Alabaster O. Microsatellite instability in aberrant crypt foci from human colons. Cancer Res 1996; 56(23):5339-41.
  23. Pedroni M, Sala E, Scarselli A, Borghi F, Menigatti M, Benatti P, et al. Microsatellite instability and mismatch-repair protein expression in hereditary and sporadic colorectal carcinogenesis. Cancer Res 2001; 61(3):896-9.
  24. Shivapurkar N, Huang L, Ruggeri B, Swalsky PA, Bakker A, Finkelstein S, et al. K-ras and p53 mutations in aberrant crypt foci and colonic tumors from colon cancer patients. Cancer Lett 1997; 115(1):39-46.
  25. Shpitz B, Bomstein Y, Shalev M, Liverant S, Kaufman Z, Klein E, et al. Oncoprotein coexpression in human aberrant crypt foci and minute polypoid lesions of the large bowel. Anticancer Res 1999; 19(4B):3361-6.
  26. Takayama T, Ohi M, Hayashi T, Miyanishi K, Nobuoka A, Nakajima T, et al. Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology 2001; 121(3):599-611.
  27. Smith AJ, Stern HS, Penner M, Hay K, Mitri A, Bapat BV, et al. Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res 1994; 54(21):5527-30.
  28. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Dong Chen W, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36(4):417-22.
  29. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993; 9(4):138-41.
  30. Chung DC. The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 2000; 119(3):854-65.
  31. Ponder BA. Cancer genetics. Nature 2001; 411(6835):336-41.
  32. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57-70.
  33. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999; 9(12):M57-60.
  34. Muto T, Bussey HJ, Morson BC. The evolution of cancer of the colon and rectum. Cancer 1975; 36(6):2251-70.
  35. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61(5):759-67.
  36. Shiozawa J, Ito M, Nakayama T, Nakashima M, Kohno S, Sekine I. Expression of matrix metalloproteinase-1 in human colorectal carcinoma. Mod Pathol 2000; 13(9):925-33.
  37. Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K. Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 1999; 45(2):252-8.
  38. Vermeulen SJ, Bruyneel EA, Bracke ME, De Bruyne GK, Vennekens KM, Vleminckx KL, et al. Transition from the noninvasive to the invasive phenotype and loss of alpha-catenin in human colon cancer cells. Cancer Res 1995; 55(20):4722-8.
  39. Portera CA, Jr., Berman RS, Ellis LM. Molecular determinants of colon cancer metastasis. Surg Oncol 1998; 7(3-4):183-95.
  40. Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 2001; 61(16):6050-4.
  41. Kaklamanis L, Kakolyris S, Koukourakis M, Gatter KC, Harris AL. From hyperplasia to neoplasia and invasion: angiogenesis in the colorectal adenoma-carcinoma model. Adv Exp Med Biol 2000; 476:249-66.
  42. Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004; 113(2):160-8.
  43. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87(2):159-70.
  44. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386(6627):761, 763.
  45. Chung DC, Rustgi AK. DNA mismatch repair and cancer. Gastroenterology 1995; 109(5):1685-99.
  46. Jass JR, Biden KG, Cummings MC, Simms LA, Walsh M, Schoch E, et al. Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways. J Clin Pathol 1999; 52(6):455-60.
  47. Hasegawa H, Ueda M, Watanabe M, Teramoto T, Mukai M, Kitajima M. K-ras gene mutations in early colorectal cancer ... flat elevated vs polyp-forming cancer. Oncogene 1995; 10(7):1413-6.
  48. Olschwang S, Slezak P, Roze M, Jaramillo E, Nakano H, Koizumi K, et al. Somatically acquired genetic alterations in flat colorectal neoplasias. Int J Cancer 1998; 77(3):366-9.
  49. Saitoh Y, Waxman I, West AB, Popnikolov NK, Gatalica Z, Watari J, et al. Prevalence and distinctive biologic features of flat colorectal adenomas in a North American population. Gastroenterology 2001; 120(7):1657-65.
  50. Yashiro M, Carethers JM, Laghi L, Saito K, Slezak P, Jaramillo E, et al. Genetic pathways in the evolution of morphologically distinct colorectal neoplasms. Cancer Res 2001; 61(6):2676-83.
  51. Jass JR, Whitehall VL, Young J, Leggett BA. Emerging concepts in colorectal neoplasia. Gastroenterology 2002; 123(3):862-76.
  52. Jass JR. Hyperplastic polyps and colorectal cancer: is there a link Clin Gastroenterol Hepatol 2004; 2(1):1-8.
  53. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, et al. Mutations in APC, Kirsten-ras, and p53--alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A 2002; 99(14):9433-8.
  54. Hofseth LJ, Khan MA, Ambrose M, Nikolayeva O, Xu-Welliver M, Kartalou M, et al. The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. J Clin Invest 2003; 112(12):1887-94.
  55. Guo HH, Loeb LA. Tumbling down a different pathway to genetic instability. J Clin Invest 2003; 112(12):1793-5.
  56. Walsh S, Murphy M, Silverman M, Odze R, Antonioli D, Goldman H, et al. p27 expression in inflammatory bowel disease-associated neoplasia. Further evidence of a unique molecular pathogenesis. Am J Pathol 1999; 155(5):1511-8.
  57. Itzkowitz SH. Inflammatory bowel disease and cancer. Gastroenterol Clin North Am 1997; 26(1):129-39.
  58. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev 2004; 23(1-2):11-27.
  59. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396(6712):643-9.
  60. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386(6625):623-7.
  61. Augenlicht LH, Richards C, Corner G, Pretlow TP. Evidence for genomic instability in human colonic aberrant crypt foci. Oncogene 1996; 12(8):1767-72.
  62. Breivik J, Gaudernack G. Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Semin Cancer Biol 1999; 9(4):245-54.
  63. Murray AW. The genetics of cell cycle checkpoints. Curr Opin Genet Dev 1995; 5(1):5-11.
  64. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392(6673):300-3.
  65. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 2001; 3(4):433-8.
  66. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol 2001; 3(4):429-32.
  67. Chan SR, Blackburn EH. Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 2004; 359(1441):109-21.
  68. Stewart SA, Weinberg RA. Telomerase and human tumorigenesis. Semin Cancer Biol 2000; 10(6):399-406.
  69. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406(6796):641-5.
  70. Engelhardt M, Drullinsky P, Guillem J, Moore MA. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res 1997; 3(11):1931-41.
  71. Plentz RR, Wiemann SU, Flemming P, Meier PN, Kubicka S, Kreipe H, et al. Telomere shortening of epithelial cells characterises the adenoma-carcinoma transition of human colorectal cancer. Gut 2003; 52(9):1304-7.
  72. Hermsen M, Postma C, Baak J, Weiss M, Rapallo A, Sciutto A, et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 2002; 123(4):1109-19.
  73. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28(2):155-9.
  74. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97(4):527-38.
  75. Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene 2004; 23(38):6445-70.
  76. Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 2001; 10(7):735-40.
  77. Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 1999; 9(1):89-96.
  78. Huang J, Papadopoulos N, McKinley AJ, Farrington SM, Curtis LJ, Wyllie AH, et al. APC mutations in colorectal tumors with mismatch repair deficiency. Proc Natl Acad Sci U S A 1996; 93(17):9049-54.
  79. Miyaki M, Iijima T, Kimura J, Yasuno M, Mori T, Hayashi Y, et al. Frequent mutation of beta-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Res 1999; 59(18):4506-9.
  80. Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW, et al. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 1995; 55(23):5548-50.
  81. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275(5302):967-9.
  82. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96(4):261-8.
  83. Lynch HT, Smyrk T, Lynch J. An update of HNPCC (Lynch syndrome). Cancer Genet Cytogenet 1997; 93(1):84-99.
  84. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999; 116(6):1453-6.
  85. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, et al. The molecular basis of Turcot's syndrome. N Engl J Med 1995; 332(13):839-47.
  86. Kruse R, Rutten A, Lamberti C, Hosseiny-Malayeri HR, Wang Y, Ruelfs C, et al. Muir-Torre phenotype has a frequency of DNA mismatch-repair-gene mutations similar to that in hereditary nonpolyposis colorectal cancer families defined by the Amsterdam criteria. Am J Hum Genet 1998; 63(1):63-70.
  87. Liu B, Parsons R, Papadopoulos N, Nicolaides NC, Lynch HT, Watson P, et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med 1996; 2(2):169-74.
  88. Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M, et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 1997; 17(3):271-2.
  89. Akiyama Y, Sato H, Yamada T, Nagasaki H, Tsuchiya A, Abe R, et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 1997; 57(18):3920-3.
  90. Huang J, Kuismanen SA, Liu T, Chadwick RB, Johnson CK, Stevens MW, et al. MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Cancer Res 2001; 61(4):1619-23.
  91. Kolodner RD, Tytell JD, Schmeits JL, Kane MF, Gupta RD, Weger J, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res 1999; 59(20):5068-74.
  92. Liu T, Yan H, Kuismanen S, Percesepe A, Bisgaard ML, Pedroni M, et al. The Role of hPMS1 and hPMS2 in Predisposing to Colorectal Cancer. Cancer Res 2001; 61(21):7798-802.
  93. Wu Y, Berends MJ, Sijmons RH, Mensink RG, Verlind E, Kooi KA, et al. A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nat Genet 2001; 29(2):137-8.
  94. Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet 1995; 9(1):48-55.
  95. Ma AH, Xia L, Littman SJ, Swinler S, Lader G, Polinkovsky A, et al. Somatic mutation of hPMS2 as a possible cause of sporadic human colon cancer with microsatellite instability. Oncogene 2000; 19(18):2249-56.
  96. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 1998; 95(12):6870-5.
  97. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 1997; 57(5):808-11.
  98. Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A 1998; 95(15):8698-702.
  99. Jiricny J, Marra G. DNA repair defects in colon cancer. Curr Opin Genet Dev 2003; 13(1):61-9.
  100. Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res 2003; 63(22):7595-9.
  101. Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Stoerker J, Genuardi M, et al. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J Biol Chem 2000; 275(42):32422-9.
  102. Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, et al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet 1999; 23(3):266-8.
  103. Kambara T, Whitehall VL, Spring KJ, Barker MA, Arnold S, Wynter CV, et al. Role of inherited defects of MYH in the development of sporadic colorectal cancer. Genes Chromosomes Cancer 2004; 40(1):1-9.
  104. Bader S, Walker M, Hendrich B, Bird A, Bird C, Hooper M, et al. Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene 1999; 18(56):8044-7.
  105. Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 2004; 23(1-2):29-39.
  106. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3(6):415-28.
  107. Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet 2002; 3:101-28.
  108. Tycko B. Epigenetic gene silencing in cancer. J Clin Invest 2000; 105(4):401-7.
  109. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000; 16(4):168-74.
  110. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001; 10(7):687-92.
  111. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001; 20(24):3139-55.
  112. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61(8):3225-9.
  113. Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 2000; 60(16):4366-71.
  114. Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 2000; 60(9):2368-71.
  115. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000; 24(2):132-8.
  116. Rashid A, Shen L, Morris JS, Issa JP, Hamilton SR. CpG island methylation in colorectal adenomas. Am J Pathol 2001; 159(3):1129-35.
  117. Toyota M, Ohe-Toyota M, Ahuja N, Issa JP. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci U S A 2000; 97(2):710-5.
  118. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999; 96(15):8681-6.
  119. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet 2001; 10(7):721-33.
  120. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391(6663):184-7.
  121. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998; 18(1):38-43.
  122. Dong SM, Kim KM, Kim SY, Shin MS, Na EY, Lee SH, et al. Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res 1998; 58(17):3787-90.
  123. Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 1998; 280(5366):1086-8.
  124. Zhou XP, Woodford-Richens K, Lehtonen R, Kurose K, Aldred M, Hampel H, et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet 2001; 69(4):704-11.

Título español
Resumen
 Palabras clave
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

 English title
 Abstract
 Key words
Full text
(exclusivo a suscriptores)

Autor 
Artículos
Correspondencia

Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008