TRATAMIENTO ONCOLOGICO NO RADICAL DIRIGIDO AL ESTROMA

(especial para SIIC © Derechos reservados)
La administración diaria de una dosis baja de agentes citotóxicos, denominada quimioterapia metronómica, mostró también efectos antiangiógenos y, por lo tanto, podría complementar las nuevas estrategias dirigidas al estroma que utilizan biomoduladores.
bundscherer9.jpg Autor:
Annika Bundscherer
Columnista Experto de SIIC
Artículos publicados por Annika Bundscherer
Coautores
Christian Hafner* Thomas Vogt* 
MD, University of Regensburg, Regensburg, Alemania*
Recepción del artículo
30 de Noviembre, 2006
Aprobación
6 de Febrero, 2007
Primera edición
3 de Agosto, 2007
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
El tratamiento del cáncer refractario a la quimioterapia y metastásico sigue siendo un gran desafío en oncología. La terapia convencional del cáncer consiste en cirugía, quimioterapia cíclica con las dosis máximas toleradas y radioterapia. Aunque los efectos iniciales de estos regímenes a menudo son muy impresionantes, la selección de clones tumorales resistentes suele conducir a la progresión de la enfermedad. Además, la quimioterapia convencional puede asociarse con efectos colaterales graves y limitantes de la dosis. En la búsqueda de nuevas estrategias para el tratamiento oncológico no radical, las dirigidas al estroma y las antiangiógenas representan actualmente novedosas alternativas potencialmente útiles. Es interesante señalar que varios fármacos bien conocidos que se encuentran en uso clínico para indicaciones no oncológicas también muestran efectos sobre el estroma tumoral. Por ejemplo, se demostró que agentes como los antagonistas de mTOR, los agonistas de PPAR-γ y los inhibidores de la COX-2 inducen apoptosis e inhiben la proliferación celular en las células tumorales, lo cual está más allá de su campo de aplicación. Cabe señalar que además de distintas actividades antineoplásicas, estos agentes pueden mostrar efectos antiangiógenos e inmunomoduladores al interferir con la interacción tumor-estroma. El uso combinado de estos agentes biomoduladores podría conducir a efectos antitumorales sinérgicos sin provocar efectos colaterales graves. Más aun, la administración diaria de una dosis baja de los agentes citotóxicos, denominada quimioterapia metronómica, mostró también efectos antiangiógenos y, por lo tanto, podría complementar a las nuevas estrategias que utilizan biomoduladores dirigidas al estroma. En concordancia ya se demostró en varios estudios preclínicos la eficiencia antitumoral del uso combinado de los agentes biomoduladores y la quimioterapia metronómica. Los nuevos resultados de los ensayos clínicos que se encuentran en progresión estimularán el desarrollo de estas estrategias dirigidas al estroma.

Palabras clave
terapia dirigida contra el estroma, quimioterapia metronómica, antagonistas mTOR, agonistas PPAR (gamma), inhibidores de la COX-2


Artículo completo

(castellano)
Extensión:  +/-14.45 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
The treatment of chemorefractory and metastatic cancer remains to be a great challenge in oncology. Conventional cancer therapy consists of surgery, cyclic chemotherapy with maximal tolerated doses and radiotherapy. Although the initial effects of these regimen are often quite impressive, selection of resistant tumor clones often leads to progression of disease. Furthermore, conventional chemotherapy can be associated with severe and dose limiting side effects. In search for new strategies for tumor palliation, stroma targeted and antiangiogenetic strategies now are emerging potentially useful alternatives. Interestingly, several well established drugs, which are in clinical use for non-oncological indications, also exhibit effects on the tumor stroma. For instance agents such as mTOR antagonists, PPAR-γ agonists and COX 2 inhibitors were shown to induce apoptosis and inhibit cell proliferation in tumor cells beyond their primary field of application in medicine. Notably, in addition to direct anticancer activities, these drugs are able to exhibit antiangiogenetic and immunmodulating effects by interfering with the tumor-stroma interaction. Combinatorial use of these biomodulating agents might lead to super-additive antitumor effects without causing severe side effects. Moreover, daily low dose administration of cytotoxic drugs, referred to as metronomic chemotherapy, turned out to exhibit antiangiogenetic effects as well and may thereby complement the novel strategies using biomodulators for stroma targeting. Accordingly, in several preclinical studies, the antitumoral efficiency of combinatorial use of both biomodulating drugs and metronomic chemotherapy has already been demonstrated. New results of ongoing clinical trials will encourage the developing of such stroma-targeted therapies.

Key words
stroma-targeted therapy, metronomic chemotherapy, mTOR antagonists, PPAR(gamma) agonists, COX 2 inhibitors


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Oncología
Relacionadas: Bioética, Farmacología, Medicina Farmacéutica, Medicina Interna



Comprar este artículo
Extensión: 14.45 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Thomas Vogt, Department of Dermatology, University of Regensburg , D-93042, Franz-Josef- Strauß Allee 11, Regensburg, Alemania
Bibliografía del artículo
1. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4(6):423-36, 2004.
2. Hafner C, Reichle A, Vogt T. New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARgamma agonists, COX-2 inhibitors, mTOR antagonists and metronomic chemotherapy. Curr Cancer Drug Targets 5(6):393-419, 2005.
3. Hafner C, Landthaler M, Vogt T. [Stroma-targeted palliative tumor therapy with biomodulators]. J Dtsch Dermatol Ges 4(3):242-53; quiz 254-5, 2006.
4. Zhu Z, Witte L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest New Drugs 17(3):195-212, 1999.
5. Gille J, Spieth K, Kaufmann R. Metronomic low-dose chemotherapy as antiangiogenic therapeutic strategy for cancer. J Dtsch Dermatol Ges 3(1):26-32, 2005.
6. Man S, Bocci G, Francia G, et al. Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 62(10):2731-5, 2002.
7. Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60(7):1878-86, 2000.
8. Kim JT, Kim JS, Ko KW, et al. Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas. Oncol Rep 16(1):33-9, 2006.
9. Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 100(22):12917-22, 2003.
10. Rapisarda A, Zalek J, Hollingshead M, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res 64(19):6845-8, 2004.
11. Bertolini F, Paul S, Mancuso P, et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63(15):4342-6, 2003.
12. Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose "chemo-switch" regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23(5):939-52, 2005.
13. Shaked Y, Emmenegger U, Francia G, et al. Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65(16):7045-51, 2005.
14. Correale P, Cerretani D, Remondo C, et al. A novel metronomic chemotherapy regimen of weekly platinum and daily oral etoposide in high-risk non-small cell lung cancer patients. Oncol Rep 16(1):133-40, 2006.
15. Proud CG. Regulation of mammalian translation factors by nutrients. Eur J Biochem 269(22):5338-49, 2002.
16. Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3(4):371-7, 2003.
17. DeGraffenried LA, Fulcher L, Friedrichs WE, Grunwald V, Ray RB, Hidalgo M. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol 15(10):1510-6, 2004.
18. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28(10):721-6, 1975.
19. Eng CP, Sehgal SN, Vezina C. Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo) 37(10):1231-7, 1984.
20. Douros J, Suffness M. New antitumor substances of natural origin. Cancer Treat Rev 8(1):63-87, 1981.
21. Carraway H, Hidalgo M. New targets for therapy in breast cancer: mammalian target of rapamycin (mTOR) antagonists. Breast Cancer Res 6(5):219-24, 2004.
22. Xu G, Zhang W, Bertram P, Zheng XF, McLeod H. Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncol 24(4):893-900, 2004.
23. Decker T, Hipp S, Ringshausen I, et al. Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 101(1):278-85, 2003.
24. Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int 63(3):917-26, 2003.
25. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 98(17):9666-70, 2001.
26. Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 61(8):3373-81, 2001.
27. Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA. The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun 331(1):295-302, 2005.
28. Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 59(4):886-94, 1999.
29. Zhou C, Gehrig PA, Whang YE, Boggess JF. Rapamycin inhibits telomerase activity by decreasing the hTERT mRNA level in endometrial cancer cells. Mol Cancer Ther 2(8):789-95, 2003.
30. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4(10):1533-40, 2005.
31. Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Jr., Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 93(20):10595-9, 1996.
32. El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 63(17):5173-7, 2003.
33. Bruns CJ, Koehl GE, Guba M, et al. Rapamycin-induced endothelial cell death and tumor vessel thrombosis potentiate cytotoxic therapy against pancreatic cancer. Clin Cancer Res 10(6):2109-19, 2004.
34. Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23(23):5294-304, 2005.
35. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 22(5):909-18, 2004.
36. Margolin K, Longmate J, Baratta T, et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 104(5):1045-8, 2005.
37. Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5(7):419-29, 2004.
38. Zander T, Kraus JA, Grommes C, et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 81(5):1052-60, 2002.
39. Zang C, Wachter M, Liu H, et al. Ligands for PPARgamma and RAR cause induction of growth inhibition and apoptosis in human glioblastomas. J Neurooncol 65(2):107-18, 2003.
40. Yu J, Qiao L, Zimmermann L, et al. Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo. Hepatology 43(1):134-43, 2006.
41. Ferruzzi P, Ceni E, Tarocchi M, et al. Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J Clin Endocrinol Metab 90(3):1332-9, 2005.
42. Demetri GD, Fletcher CD, Mueller E, et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96(7):3951-6, 1999.
43. Hirase N, Yanase T, Mu Y, et al. Thiazolidinedione induces apoptosis and monocytic differentiation in the promyelocytic leukemia cell line HL60. Oncology 57(Suppl 2):17-26, 1999.
44. Nakashiro K, Begum NM, Uchida D, et al. Thiazolidinediones inhibit cell growth of human oral squamous cell carcinoma in vitro independent of peroxisome proliferator-activated receptor gamma. Oral Oncol 39(8):855-61, 2003.
45. Xin X, Yang S, Kowalski J, Gerritsen ME. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274(13):9116-21, 1999.
46. Panigrahy D, Singer S, Shen LQ, et al. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110(7):923-32, 2002.
47. Goetze S, Bungenstock A, Czupalla C, et al. Leptin induces endothelial cell migration through Akt, which is inhibited by PPARgamma-ligands. Hypertension 40(5):748-54, 2002.
48. Galli A, Ceni E, Crabb DW, et al. Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut 53(11):1688-97, 2004.
49. Szanto A, Nagy L. Retinoids potentiate peroxisome proliferator-activated receptor gamma action in differentiation, gene expression, and lipid metabolic processes in developing myeloid cells. Mol Pharmacol 67(6):1935-43, 2005.
50. Szatmari I, Gogolak P, Im JS, Dezso B, Rajnavolgyi E, Nagy L. Activation of PPARgamma specifies a dendritic cell subtype capable of enhanced induction of iNKT cell expansion. Immunity 21(1):95-106, 2004.
51. Sanborn R, Blanke CD. Cyclooxygenase-2 inhibition in colorectal cancer: boom or bust? Semin Oncol 32(1):69-75, 2005.
52. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215(1):1-20, 2004.
53. Schwab JM, Schluesener HJ, Meyermann R, Serhan CN. COX-3 the enzyme and the concept: steps towards highly specialized pathways and precision therapeutics? Prostaglandins Leukot Essent Fatty Acids 69(5):339-43, 2003.
54. DeWitt DL. Cox-2-selective inhibitors: the new super aspirins. Mol Pharmacol 55(4):625-31, 1999.
55. Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G, et al. PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol 132(2):76-84, 2006.
56. Evans JF, Kargman SL. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 10(6):627-34, 2004.
57. Liu X, Yue P, Zhou Z, Khuri FR, Sun SY. Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst 96(23):1769-80, 2004.
58. Dandekar DS, Lopez M, Carey RI, Lokeshwar BL. Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 115(3):484-92, 2005.
59. Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res 7(4):R422-35, 2005.
60. Kulp SK, Yang YT, Hung CC, et al. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 64(4):1444-51, 2004.
61. Wei SC, Lin YS, Tsao PN, Wu-Tsai JJ, Wu CH, Wong JM. Comparison of the anti-proliferation and apoptosis-induction activities of sulindac, celecoxib, curcumin, and nifedipine in mismatch repair-deficient cell lines. J Formos Med Assoc 103(8):599-606, 2004.
62. Dvory-Sobol H, Cohen-Noyman E, Kazanov D, et al. Celecoxib leads to G2/M arrest by induction of p21 and down-regulation of cyclin B1 expression in a p53-independent manner. Eur J Cancer 42(3):422-6, 2006.
63. Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J. Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62(7):2029-33, 2002.
64. Vogt T, McClelland M, Jung B, et al. Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II. Melanoma Res 11(6):587-99, 2001.
65. Kardosh A, Blumenthal M, Wang WJ, Chen TC, Schonthal AH. Differential effects of selective COX-2 inhibitors on cell cycle regulation and proliferation of glioblastoma cell lines. Cancer Biol Ther 3(1):55-62, 2004.
66. Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. Faseb J 15(14):2742-4, 2001.
67. Patel MI, Subbaramaiah K, Du B, et al. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 11(5):1999-2007, 2005.
68. Han C, Leng J, Demetris AJ, Wu T. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 64(4):1369-76, 2004.
69. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83(3):493-501, 1995.
70. Gately S, Li WW. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31(2 Suppl 7):2-11, 2004.
71. Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60(5):1306-11, 2000.
72. Harris RE, Beebe-Donk J, Schuller HM. Chemoprevention of lung cancer by non-steroidal anti-inflammatory drugs among cigarette smokers. Oncol Rep 9(4):693-5, 2002.
73. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342(26):1946-52, 2000.
74. Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW, Jr. Aspirin use and risk of fatal cancer. Cancer Res 53(6):1322-7, 1993.
75. Kerbel RS, Yu J, Tran J, et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20(1-2):79-86, 2001.
76. Konstantinopoulos PA, Vandoros GP, Sotiropoulou-Bonikou G, Kominea A, Papavassiliou AG. NF-kappaB/PPARgamma and/or AP-1/PPARgamma 'on/off' switches and induction of CBP in colon adenocarcinomas: correlation with COX-2 expression. Int J Colorectal Dis 2006.
77. Han S, Inoue H, Flowers LC, Sidell N. Control of COX-2 gene expression through peroxisome proliferator-activated receptor gamma in human cervical cancer cells. Clin Cancer Res 9(12):4627-35, 2003.
78. Stadlmann S, Gueth U, Wight E, Kunz-Schughart L, Hartmann A, Singer G. Expression of peroxisome proliferator activated receptor-gamma and cyclooxygenase-2 in primary and recurrent ovarian carcinoma. J Clin Pathol 2006.
79. Michael MS, Badr MZ, Badawi AF. Inhibition of cyclooxygenase-2 and activation of peroxisome proliferator-activated receptor-gamma synergistically induces apoptosis and inhibits growth of human breast cancer cells. Int J Mol Med 11(6):733-6, 2003.
80. Zhang X, Chen ZG, Choe MS, et al. Tumor growth inhibition by simultaneously blocking epidermal growth factor receptor and cyclooxygenase-2 in a xenograft model. Clin Cancer Res 11(17):6261-9, 2005.
81. Copland JA, Marlow LA, Kurakata S, et al. Novel high-affinity PPARgamma agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1. Oncogene 25(16):2304-17, 2006.
82. Vogt T, Hafner C, Bross K, et al. Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 98(10):2251-6, 2003.
83. Reichle A, Bross K, Vogt T, et al. Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma. Cancer 101(10):2247-56, 2004.
84. Coras B, Hafner C, Reichle A, et al. Antiangiogenic therapy with pioglitazone, rofecoxib, and trofosfamide in a patient with endemic kaposi sarcoma. Arch Dermatol 140(12):1504-7, 2004.
85. Reichle A, Vogt T, Kunz-Schughart L, et al. Anti-inflammatory and angiostatic therapy in chemorefractory multisystem Langerhans' cell histiocytosis of adults. Br J Haematol 128(5):730-2, 2005.
86. Young SD, Whissell M, Noble JC, Cano PO, Lopez PG, Germond CJ. Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumors. Clin Cancer Res 12(10):3092-8, 2006.
87. Ferrari V, Valcamonico F, Amoroso V, et al. Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase II trial. Cancer Chemother Pharmacol 57(2):185-90, 2006.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008