LAS FIBRAS NERVIOSAS SENSITIVAS INTERVIENEN EN LA FASE FEBRIL TEMPRANA

(especial para SIIC © Derechos reservados)
El síndrome de la fase temprana (una manifestación inespecífica de inflamación o infección) se presenta con hipertermia, hiperalgesia, estado de alerta, agitación motriz e hipertensión arterial.
Autor:
Andrej a. Romanovsky
Columnista Experto de SIIC
Artículos publicados por Andrej a. Romanovsky
Recepción del artículo
13 de Septiembre, 2002
Primera edición
21 de Octubre, 2002
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Las manifestaciones inespecíficas (síntomas de enfermedad) de inflamación o infección se producen en dos fases: temprana y tardía. El síndrome de la fase temprana -materia de este comentario- se manifiesta con elevación de la temperatura corporal, hiperalgesia/alodinia, estado de vigilia, agitación motriz e hipertensión arterial. En el laboratorio puede ser estudiado con diferentes modelos animales. Se utilizaron dos modelos diferentes de fiebre inducida por la administración intravenosa de lipopolisacáridos en ratas: (1) una respuesta febril monofásica a dosis bajas, apenas supraumbrales, de lipopolisacárido y (2) la primera elevación de la temperatura corporal (fase I) de la respuesta polifásica a las dosis más elevadas. Las pruebas en ambos modelos demostraron que el síndrome de la fase temprana es mediado por los nervios sensoriales. El bloqueo de la fiebre monofásica por vagotomía subdiafragmática troncal o hepática selectiva sugiere mediación de esta respuesta por las fibras vagales hepáticas, presumiblemente aferentes. El bloqueo de la fase I de la fiebre polifásica en animales desensibilizados con bajas dosis de capsaicina intraperitoneal parece señalar la participación de aferentes intraabdominales, de origen vagal o no. La hopótesis del autor es que los mecanismos neurales del síndrome de la fase temprana son activados por la prostaglandina E2 transportada por el flujo sanguíneo. La síntesis de prostaglandina periférica podría constituir uno de los blancos terapéuticos más antiguos en la inflamación y la infección.

Palabras clave
Fiebre, enfermedad, lipopolisacárido, nervio vago


Artículo completo

(castellano)
Extensión:  +/-11.3 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Nonspecific manifestations (sickness symptoms) of inflammation or infection occur in two phases, the early and late. The early phase syndrome, the subject of this commentary, manifests itself with a high body temperature, hyperalgesia/allodynia, arousal, motor agitation, and arterial hypertension. In the laboratory, it can be studied by using different animal models. Two rat models of intravenous lipopolysaccharide-induced fever have been used: 1) a monophasic febrile response to low, just suprathreshold doses of lipopolysaccharide and 2) the first rise in body temperature (Phase I) of the polyphasic response to higher doses. Experiments in both models show that the early phase syndrome is mediated by sensory nerves. The blockade of monophasic fever by truncal subdiaphragmatic or selective hepatic vagotomy suggests mediation of this response by the hepatic vagal fibers, presumably afferents. The blockade of Phase I of polyphasic fever in animals desensitized with low doses of intraperitoneal capsaicin suggests an involvement of intra-abdominal afferents, whether vagal or non-vagal. We speculate that the neural mechanisms of the early phase syndrome are triggered by peripherally originated, blood-borne prostaglandin E2. Synthesis of peripheral prostaglandin may constitute one of the oldest therapeutic targets in inflammation and infection.


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Medicina Interna
Relacionadas: Neurología



Comprar este artículo
Extensión: 11.3 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra




Patrocinio y reconocimiento:
Los siguientes profesionales realizaron importantes contribuciones a la investigación reseñada en este trabajo: Profesor Miklós Székely (consejero del autor), Profesor Vladi Kulchitsky (colaborador), Dr. Andrei Ivanov (ex becario) y Dr. Chris Simons (ex estudiante). La investigación reseñada fue posible gracias a las subvenciones y generosas donaciones de los National Health Institutes (NINDS grant R01 NS-41233), Collins Medical Trust, Good Samaritan Foundation, Oregon Health Sciences Foundation (Medical Reasearch Foundation of Oregon), Bayer AG (Alemania), Women's Board of the Barrow Neurological Institute y Dr. Temple Fay's Memorial Account.
Bibliografía del artículo
  1. Romanovsky, A.A., Ivanov, A.I., Székely, M., 2000. Neural route of pyrogen signaling to the brain. Clin. Infect. Dis. 31, S162-S167.
  2. Romanovsky, A.A., 2000. Thermoregulatory manifestations of systemic inflammation: Lessons from vagotomy. Auton. Neurosci. 85: 39-48.
  3. Romanovsky, A.A., Ivanov, A.I., Shimansky, Y.P., 2002. Selected contribution: Ambient temperature for experiments in rats: A new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92, 2667-2679.
  4. Székely, M., Szelényi, J., 1979. Endotoxin fever in the rat. Acta Physiol. Hung. 53, 265-277.
  5. Romanovsky, A.A., Simons, C.T., Kulchitsky, V.A., 1998. "Biphasic" fevers often consist of more than two phases. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275, R323-331.
  6. Vybíral, S., Székely, M., Janský, L., and Cerný, L., 1987. Thermoregulation of the rabbit during the late phase of endotoxin fever. Pflügers Arch. 410, 220-222.
  7. DeRijk, R.H., Van Kampen, M., Van Rooijen, N., Berkenbosch, F., 1994. Hypothermia to endotoxin involves reduced thermogenesis, macrophage-dependent mechanisms, and prostaglandins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 266, R1-R8.
  8. Romanovsky, A.A., Shido, O., Sakurada, S., Sugimoto, N., Nagasaka, T., 1996. Endotoxin shock: thermoregulatory mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 270, R693-R703.
  9. Romanovsky, A.A, Kulchitsky, V.A., Akulich, N.V., Koulchitsky, S.V., Simons, C.T., Sessler, D.I., Gourine, V.N., 1996. First and second phases of biphasic fever: two sequential stages of the sickness syndrome Am. J. Physiol. Regul. Integr. Comp. Physiol. 271, R244-R253.
  10. Henry, J.P., 1993. Biological basis of the stress response. News Physiol. Sci. 8, 69-73.
  11. Hart, B.L., 1988. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123-137.
  12. Romanovsky, A.A., Blatteis, C.M., 1995. Biphasic fever: what triggers the second temperature rise Am. J. Physiol. Regul. Integr. Comp. Physiol. 269, R280-R286.
  13. Ivanov, A.I., Pero, R.S., Scheck, A.C., Romanovsky, A.A., 2002. Prostaglandin E2-synthesizing enzymes in fever: differential transcriptional regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R000-R000 (in press). (First published July 25, 2002; 10.1152/ajpregu.00347.2002.)
  14. Morimoto, A., Murakami, N., Nakamori, T., Watanabe, T., 1987. Evidence for separate mechanisms of induction of biphasic fever inside and outside the blood-brain barrier in rabbits. J. Physiol. (Lond.) 383, 629-637.
  15. Cooper, A.L., Rothwell, N.J., 1991. Mechanisms of early and late hypermetabolism and fever after localized tissue injury in rats. Am. J. Physiol. Endocrinol. Metab. 261, E698-E705.
  16. Spector, N.H., 1991. Concluding remarks: Two dozen current problems in neuroimmunomodulation, aging, and cancer research; the Second Stromboli Cocktail; further rambunctious remarks. Ann. N. Y. Acad. Sci. 621, 441-446.
  17. Niijima, A., 1992. The afferent discharges from sensors for interleukin-1( in the hepato-portal system in the anaesthetized rat (Abstract). J. Physiol. (Lond.) 446, 236P.
  18. Ericsson, A., Amaral, D.G., Sawchenko, P.E., 1992. Systemic administration of interleukin-1( results in increased levels of NGFI-B mRNA in the endocrine hypothalamus and its medullary afferents (Abstract). Soc. Neurosci. Abstr. 18, 1013.
  19. Wan, W., Janz, L., Vriend, C.Y., Sorensen, C.M., Greenberg, A.H., Nance, D.M., 1993. Differential induction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res. Bull. 32, 581-7.
  20. Watkins, L.R., Wiertelak, E.P., Goehler, L.E., Mooney-Heiberger, K., Martinez, J., Furness, L., Smith, K.P., Maier, S.F., 1994. Neurocircuitry of illness-induced hyperalgesia. Brain Res. 639, 283-299.
  21. Watkins, L.R., Goehler, L.E., Relton, J.K., Tartaglia, N., Silbert, L., Martin, D., Maier, S.F., 1995a. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 183, 27-31.
  22. Székely, M., Balaskó, M., Romanovsky, A.A., 1995. Capsaicin-sensitive neural afferents in fever pathogenesis (Abstract). Pflügers Arch. 440, R64.
  23. Romanovsky, A.A., Kulchitsky, V.A., Simons, C.T., Sugimoto, N., Székely, M., 1997. Febrile responsiveness of vagotomized rats is suppressed even in the absence of malnutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273, R777-R783.
  24. Romanovsky, A.A., Simons, C.T., Székely, M., Kulchitsky, V.A., 1997. The vagus nerve in the thermoregulatory response to systemic inflammation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273, R407-R413.
  25. Simons, C.T., Kulchitsky, V.A., Sugimoto, N., Homer, L.D., Székely, M., Romanovsky, A.A., 1998. Signaling the brain in systemic inflammation: which vagal branch is involved in fever genesis Am. J. Physiol. Regul. Integr. Comp. Physiol. 275, R63-R68.
  26. Berthoud, H.-R., Neuhuber, W.L., 2000. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci., 85, 1-17.
  27. Prechtl, J.C., Powley, T.L., 1990. The fiber composition of the abdominal vagus of the rat. Anat. Embryol. 181, 101-115.
  28. Dinarello, C.A., Bodel, P.T., Atkins, E., 1968. The role of the liver in the production of fever and in pyrogenic tolerance. Trans. Assoc. Am. Physicians 81, 334-344.
  29. Mathison, J.C., Ulevitch, R.J., 1979. The clearance, tissue distribution, and cellular localization of intravenously injected lipopolysaccharide in rabbits. J. Immunol.123, 2133-2143.
  30. Ruiter, D.J., van der Meulen, J., Brouwer, A., Hummel, M.J., Mauw, B.J., van der Ploeg, J.C., Wisse, E., 1981. Uptake by liver cells of endotoxin following its intravenous injection. Lab. Invest. 45, 38-45.
  31. Sehic, E., Hunter, W.S., Ungar, A.L., Blatteis, C.M., 1997. Blockade of Kupffer cells prevents the febrile and preoptic prostaglandin E2 responses to intravenous lipopolysaccharide in guinea pigs. Ann. N. Y. Acad. Sci. 813, 448-452.
  32. Watkins, L.R., Wiertelak, E.P., Goehler, L.E., Smith, K.P., Martin, D., Maier, S.F., 1994. Characterization of cytokine-induced hyperalgesia. Brain Res. 654, 15-26.
  33. Greisman, S.E., Woodward, C.L., 1970. Mechanisms of endotoxin tolerance. VII. The role of the liver. J. Immunol. 105, 1468-1476.
  34. Niijima, A., 1996. The afferent discharges from sensors for interleukin-1( in the hepatoportal system in the anesthetized rat. J. Auton. Nerv. Syst. 61, 287-291.
  35. Goehler, L.E., Relton, J., Dripps, D., Kiechle, R., Tartaglia, N., Maier, S.F., Watkins, L.R., 1997. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res. Bull. 43, 357-364.
  36. Ek, M., Kurosawa, M., Lundeberg, T., Heilig, M., Ericsson, A., 1998. Activation of vagal afferents after intravenous injection of interleukin-1(: role of endogenous prostaglandins. J. Neurosci. 18, 9471-9479.
  37. Watkins, L.R., Maier, S.F., Goehler, L.E., 1995. Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci. 57, 1011-1026.
  38. Blatteis, C.M., Sehic, E., 1997. Fever: how may circulating pyrogens signal the brain News Physiol. Sci. 12, 1-9.
  39. Maier, S.F., Goehler, L.E., Fleshner, M., Watkins, L.R., 1998. The role of the vagus nerve in cytokine-to-brain communication. Ann. N. Y. Acad. Sci. 840, 289-300.
  40. Hansen M.K., O'Connor, K.A., Goehler, L.E., Watkins, L.R., Maier, S.F., 2001. The contribution of the vagus nerve in interleukin-1(-induced fever is dependent on dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R929-R934.
  41. Ivanov, A.I., Kulchitsky, V.A., Sugimoto, N., Simons, C.T., Romanovsky, A.A., 2000. Does the formation of lipopolysaccharide tolerance require intact vagal innervation of the liver Auton. Neurosci. 85, 111-118.
  42. Funakoshi, A., Miyasaka, K., Jimi, A., Kawanami, Y., Takata, Y., Kono, A., 1994. Little or no expression of cholecystokinin-A receptor gene in the pancreas of diabetic rats (Otsuka Long-Evans Tokushima Fatty ¾ OLETF rats). Biochem. Biophys. Res. Commun. 199, 482-488.
  43. Smith, G.P., Jerome, C., Cushin, B.J., Eterno, R., Simansky, K.J., 1981. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213, 1036-1037.
  44. Kurosawa, M., Uvnas-Moberg, K., Miyasaka, K., Lundenberg, T., 1997. Interleukin-1 increases activity of the gastric vagal afferent nerve partly via stimulation of type A CCK receptor in anesthetized rats. J. Auton. Nerv. Syst. 62, 72-78.
  45. Ivanov, A.I., Kulchitsky, V.A., Romanovsky, A.A., 2001. Does obesity affect febrile responsiveness Int. J. Obes. Relat. Metab. Disord. 25, 586-589.
  46. Martin, S.M., Wilson, B.C., Chen, X., Takahashi, Y., Poulin, P., Pittman, Q.J., 2000. Vagal CCK and 5-HT3 receptors are unlikely to mediate LPS or IL-1(-induced fever. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R960-R965.
  47. Székely, M., Balaskó, M., Kulchitsky, V.A., Simons, C.T., Ivanov, A.I., Romanovsky, A.A., 2000. Multiple neural mechanisms of fever. Auton. Neurosci. 85, 78-82.
  48. Holzer, P., 1988. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24, 739-768.
  49. Székely, M., Romanovsky, A.A., 1997. Thermoregulatory reactions of capsaicin pretreated rats (Abstract). FASEB J. 11, A528.
  50. Carobi, C., Magni, F., 1985. Capsaicin-sensitive afferent vagal neurons innervating the rat liver. Neurosci. Lett. 62, 261-265.
  51. Székely, M., Simons, C.T., Kulchitsky, V.A., Romanovsky, A.A., 1997. The abdominal vagus: its presumed role in fever and in non-febrile temperature regulation. In: Thermal Physiology 1997, ed. by Nielsen Johannsen, B., Nielsen, R. August Krogh Institute, Copenhagen, Denmark, pp. 289-292.
  52. Skarnes, R.C., Brown, S.K, Hull, S.S., McCracken, J.A., 1981. Role of prostaglandin E in biphasic fever response to endotoxin. J. Exp. Med. 154, 1212-1224.
  53. Morimoto, A., Murakami, N., Nakamori, T., Watanabe, T., 1988. Multiple control of fever production in the central nervous system in rabbits. J. Physiol. (Lond.) 397, 269-280.
  54. Milton, A.S., 1998. Prostaglandins and fever. Prog. Brain Res. 115, 129-139.
  55. Romanovsky, A.A., Ivanov, A.I., Karman, E.K., 1999. Blood-borne, albumin-bound prostaglandin E2 may be involved in fever. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R1840-R1844.
  56. Ushikubi, F., Segi, E., Sugimoto, Y., Murata, T., Matsuoka, T., Kobayashi, T., Hizaki, H., Tuboi, K., Katsuyama, M., Ichikawa, A., Tanaka, T., Yoshida, N., Narumiya, S., 1998. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395, 281-284.
  57. Oka, T., Oka, K., Saper, C.B., 2001. Characteristics of thermoregulatory and fever responses in EP1 and EP3 receptor deficient mice (Abstract). Soc. Neurosci. Abstr. 27, 2505.
  58. Sehic, E., Blatteis, CM., 1996. Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs. Brain Res. 726, 160-166.
  59. Metz, W., Forssmann, W.G., 1980. Innervation of the liver in guinea pig and rat. Anat. Embryol. 160, 239-252.

 
 
 
 
 
 
Clasificado en
Artículos originales>
Expertos del Mundo

Especialidad principal:
Medicina Interna


Relacionadas:
Neurología
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Inicio/Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008