CARACTERISTICAS IMUNOLOGICAS DAS CELULAS-TRONCO MESENQUIMAIS

(especial para SIIC © Derechos reservados)
As células-tronco mesenquimais possuem um grande potencial de proliferação. Vários estudos têm mostrado que exercem um efeito imunossupressor tanto sobre células da imunidade inata como da adquirida. A compreensão dos mecanismos imunomodulatórios exercidos pelas células-tronco mesenquimais é essencial para o sucesso e a segurança da aplicação das mesmas nas mais diversas áreas da medicina.
vasconcellosmachado9.jpg Autor:
Cíntia De vasconcellos machado
Columnista Experta de SIIC

Institución:
Universidade Federal da Bahia


Artículos publicados por Cíntia De vasconcellos machado
Coautores
Paloma Dias da Silva Telles* Ivana Lucia Oliveira Nascimento** 
Doutora em Odontologia, Universidade Federal da Bahia, Salvador, Brasil*
Doutora em Imunologia, Universidade Federal da Bahia, Salvador, Brasil**
Recepción del artículo
2 de Mayo, 2012
Aprobación
1 de Junio, 2012
Primera edición
19 de Septiembre, 2012
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Embora a medula óssea seja a sua principal fonte, as células-tronco mesenquimais já foram isoladas de diversos locais do organismo, como fígado, pâncreas, tecido adiposo, sangue periférico e polpa dentária. São células aderentes ao plástico e morfologicamente semelhantes aos fibroblastos, as quais possuem um grande potencial de proliferação. Este grupo especial de células apresenta duas características fundamentais: capacidade de auto-renovação e de multidiferenciação, quando submetidas a estímulos apropriados. As células-tronco mesenquimais são consideradas imunologicamente privilegiadas, visto que não expressam em sua superfície moléculas co-estimulatórias, necessárias para a completa ativação das células T. Vários estudos têm mostrado que as células-tronco mesenquimais exercem um efeito imunossupressor tanto sobre células da imunidade inata como da adquirida. Estas propriedades fazem com que as terapias baseadas nas células-tronco mesenquimais tornem-se uma promissora estratégia no tratamento de diversas doenças mediadas pelo sistema imune, como a doença do enxerto-versus-hospedeiro e doenças auto-imunes, assim como na regeneração de diferentes órgãos e tecidos. A compreensão dos mecanismos imunomodulatórios exercidos pelas células-tronco mesenquimais, assim como os envolvidos na diferenciação destas células em diferentes linhagens, é essencial para o sucesso e a segurança da aplicação das mesmas nas mais diversas áreas da medicina.

Palabras clave
células-tronco mesenquimais, células madre mesenquimales, imunossupressão, inmunosupresión, sistema imune, sistema inmune


Artículo completo

(castellano)
Extensión:  +/-6.71 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, like liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation into various cell types, with appropriate stimuli. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules on their surface, required for complete T cell activation. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity. These properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, like graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safety application in several areas of medicine.

Key words
mesenchymal stem cells, immunosuppression, immune system


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Bioquímica, Inmunología
Relacionadas: Diagnóstico por Laboratorio, Hematología



Comprar este artículo
Extensión: 6.71 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Cíntia de Vasconcellos Machado, Universidade Federal da Bahia Departamento de Bio-Interação, Instituto de Ciências da Saúde, 40110-010, Rua Marechal Floriano, n° 354, apt 701, Bairro Canela, Salvador, Brasil
Bibliografía del artículo
1. Bydlowski SP, Debes AA, Maselli LMF, Janz FL. Características biológicas das células-tronco mesenquimais. Rev Bras Hematol Hemoter 31(suppl 1):25-35, 2009.
2. Miura M, Gronthos S, Zhao M, Fisher LW, Robey PG, Shi S. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100(10):5807-12, 2003.
3. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414-25, 2004.
4. Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F. Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opi Pharmacol 6(4):435-41, 2006.
5. Krampera M, Marconi S, Pasini A e col. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 40(2):382-90, 2007.
6. Le Blanc K, Rasmusson I, Sundberg B e col. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(12):1439-41, 2004.
7. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9-20, 2004.
8. Da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287-99, 2008.
9. Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 44(4):215-30, 2006.
10. Gronthos S, Mankani M, Brahim J, Robey G, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25):13625-30, 2000.
11. Roufosse CA, Direkze NC, Otto WR, Wrigth NA. Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36(4):585-97, 2004.
12. Nadig RR. Stem Cell therapy - Hype or hope? A review. J Conserv Dent 12(4):131-8, 2009.
13. Cai J, Weiss ML, Rao MS. In search of "stemness". Exp Hematol 32(7):585-98, 2004.
14. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18(4):696-704, 2003.
15. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726-36, 2008.
16. Izadpanah R, Trygg C, Patel B e col. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99(5):1285-97, 2006.
17. Govindasamy V, Ronald VS, Totey S e col. Micromanipulation of culture niche permits long-term expansion of dental pulp stem cells - and economic and commercial angle. In Vitro Cell Dev Biol Anim 46(9):764-73, 2010.
18. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815-22, 2005.
19. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181(1):67-73, 1999.
20. Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109(1):1298-306, 2007.
21. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RCR. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109(15):1743-51, 2007.
22. Tse WT, Pendleton JD, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75(3):389-97, 2003.
23. DiNicola M, Carlo-Stella C, Magni M e col. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838-43, 2002.
24. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485-9, 2003.
25. Zhang W, Ge W, Li C e col. Effects of mesenchymal stem cells on differentiation, maturation and function of human monocyte-derived dendritic cells. Stem Cells Dev 13(3):263-71, 2004.
26. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821-7, 2005.
27. Klyushnenkova E, Mosca JD, Zernetkina V e col. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12(1):47-57, 2005.
28. Corcione A, Benvenuto F, Ferretti E e col. Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367-72, 2006.
29. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327-33, 2008.
30. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113(26):6576-83, 2009.
31. Asari S, Itakura S, Ferreri K e col. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37(5):604-15, 2009.
32. Tolar J, Hippen KL, Blazar BR. Immune regulatory cells in umbilical cord blood: T regulatory cells and mesenchymal stromal cells. Br J Haematol 147(2):200-6, 2009.
33. Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8, 2005.
34. Le Blanc K, Tammik C, Rosendahl, Zetterberg, Ringén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31(10):890-6, 2003.
35. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120-6, 2005.
36. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 6th ed. Philadelphia: Elsevier; 2007. 566 pp.
37. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080-7, 2006.
38. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722-9, 2003.
39. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11-20, 2003.
40. Djouad F, Plence P, Bony C e col. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837-44, 2003.
41. Bartholomew A, Sturgeon C, Siatskas M e col. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42-8, 2002.
42. Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208-13, 2003.
43. Augello A, Tasso R, Negrini SM e col. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482-90, 2005.
44. Comoli P, Ginevri, Maccario R e col. Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 23(4):1196-202, 2008.
45. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dillo D. Human bone marrow stromal cells inhibit allogeneic T-cells responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619-21, 2004.
46. Sato K, Ozaki, Oh I e col. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109(1):228-34, 2007.
47. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 184(10):5885-94, 2010.
48. Hunt JS, Petroff MG, Morales P, Sedlmayr P, Geraghty DE, Ober C. HLA-G in reproduction: studies on the maternal-fetal interface. Hum Immunol 61(11):1113-7, 2000.
49. Selmani Z, Naji A, Zidi I e col. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26(1):212-22, 2008.
50. Bassi EJ, Aita CAM, Câmara NOS. Immune regulatory properties of multipotent mesenchymal stromal cells: Where do we stand? World J Stem Cells 3(1):1-8, 2011.
51. Le Blanc K, Frassoni F, Ball L e col. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579-86, 2008.
52. De Bari C, Dell' Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160(6):909-18, 2003.
53. Seo BM, Sonoyama W, Yamaza T e col. SHED repair critical-size calvarial defects in mice. Oral Dis 14(5):428-34, 2008.
54. Rios D, Vieira ALF, Tenuda LMA, Machado MAAM. Osteogenesis imperfecta and dentinogenesis imperfecta: associated disorders. Quintessence Int 36(9):695-701, 2005.
55. Horwitz EM, Prockop DJ, Gordon PL e col. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97(5):1227-31, 2001.
56. Horwitz EM, Gordon PL, Koo WKK e col. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 99(13):8932-7, 2002. 57. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60(4):1006-19, 2009.
58. Fiorina P, Jurewicz M, Augello A e col. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183(2):993-1004, 2009.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008