EL LARGO CAMINO HACIA EL ANTIFUNGICO IDEAL

(especial para SIIC © Derechos reservados)
El tratamiento de las infecciones fúngicas está limitado por problemas de seguridad de los fármacos empleados, así como por su perfil de resistencia y efectividad.
Autor:
Alfonso javier Carrillo-muñoz
Columnista Experto de SIIC

Institución:
ACIA


Artículos publicados por Alfonso javier Carrillo-muñoz
Coautores
Cristina Tur-Tur* Juan Manuel Hernández-Molina** Guillermo Quindós Andrés*** Gustavo Giusiano**** 
SDPI CAP MANSO, Barcelona, España*
Hospital Carlos Haya, Málaga, España**
Universidad del País Vasco, Bilbao, España***
Universidad Nacional del Nordeste, Resistencia, Argentina****
Recepción del artículo
31 de Julio, 2008
Aprobación
18 de Septiembre, 2008
Primera edición
30 de Abril, 2009
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Los diferentes tipos de micosis, especialmente las invasivas, constituyen un importante problema de salud pública puesto que su incidencia se ha incrementado dramáticamente en las últimas décadas con relación al sida, trasplantes, enfermedades hematológicas e inmunosupresiones. El tratamiento de las infecciones fúngicas está limitado por problemas de seguridad de los fármacos empleados, así como por su perfil de resistencia y efectividad. Las terapias actuales para el tratamiento de las micosis invasivas sólo abarcan un reducido número de antifúngicos como la anfotericina B, el fluconazol y el itraconazol. Otros nuevos agentes de nueva generación y también de familias químicas ya empleadas, como voriconazol, posaconazol, ravuconazol, caspofungina, anidulafungina o micafungina han sido introducidas para el tratamiento de las infecciones fúngicas. Esta revisión se centra en el mecanismo de acción de estos antifúngicos frente a levaduras patógenas. Se han explorado nuevas dianas de acción para tratar de evitar los problemas derivados del uso de azoles, macrólidos y equinocandinas. Con ello, se han propuesto y desarrollado algunas nuevas sustancias.

Palabras clave
antifúngicos, mecanismo de acción, anfotericina B, azoles, alilaminas, equinocandinas


Artículo completo

(castellano)
Extensión:  +/-7.19 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Different kinds of mycoses, especially invasive, have become an important public health problem as their incidence has increased dramatically in the last decades related with AIDS, transplant recipients, haematological malignancies and other immunosuppressed individuals. Management of fungal infections is markedly limited by problems of drug safety, resistance and effectiveness profile. Current therapy for invasive mycoses uses a relative reduced number of antifungal drugs, such as amphotericin B, fluconazole and itraconazole. Other new antifungal agents, from old and new chemical families, like voriconazole, posaconazole, ravuconazole, caspofungin or micafungin are been introduced in the armamentarium for fungal infections management. This review is focused in mode of action of those antifungal drugs used against pathogenic yeasts. Novel targets were explored trying to overcome the problems derived from the exploitation of azole drugs, macrolides and echinocandins. Proposed antifungal drugs have been developed against potential targets.

Key words
antifungal drugs, mode of action, amphotericin B, azole antifungals, allylamines, echinocandins


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Infectología
Relacionadas: Farmacología, Medicina Farmacéutica, Medicina Interna



Comprar este artículo
Extensión: 7.19 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Alfonso Javier Carrillo-Muñoz, ACIA Departamento de Microbiología, E-08080, P.O. Box 10178, Barcelona, España
Bibliografía del artículo

1. Quindós G. Mycoses at dawn of XXI Century. Rev Iberoam Micol 19:1-4, 2002.
2. García-Ruiz JC, Amutio E, Pontón J. Invasive fungal infection in immunocompromised patients. Rev Iberoam Micol 21:55-62, 2004.
3. Pontón J, Rüchel R, Clemonds KV, y col. Emerging pathogens. J Mycology 38:225-236, 2000.
4. Hazen KC. New and emerging yeast pathogens. Clin Microbiol Res 8:462-478, 1995.
5. Ellis M, Richardson M, De Pauw B. Epidemiology. Hosp Med 61:605-609, 2000.
6. Walsh TJ, Groll A, Hiemenz J, Fleming R, Roilides E, Anaissie E. Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect 10(Suppl.1):48-66, 2004.
7. Giusiano G, Mangiaterra M, Rojas F, Gámez V. Azole resistance in neonatal intensive care units. J Chemother 17:347-350, 2005.
8. Giusiano G, Mangiaterra M, Rojas F, Gámez V. Yeast species distribution in neonatal intensive care units in the northeast Argentina. Mycoses 47:300-303, 2004.
9. Antachopoulos C, Walsh TJ. New agents for invasive mycoses in children. Curr Opin Pediatr 17:78-87, 2005.
10. De Pauw BE. New antifungal agents and preparations. Int J Antimicrob Agents 16:147-150, 2000.
11. Steinbach WJ, Benjamin DK, Steinbach WJ, Benjamin DK. New antifungal agents under development in children and neonates. Curr Opin Infect Dis 18:484-489, 2005.
12. Carrillo-Muñoz AJ, Brió S, Quindós G. A new generation of antifungal drugs. Rev Iberoam Micol 18:2-5, 2001.
13. Carrillo-Muñoz AJ, Quindós G, López-Ribot JL. Current develompments in antifungal agents. Curr Med Chem Anti Infective Agents 3:297-323, 2004.
14. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new "gold standard". Clin Infect Dis 37:415-425, 2003.
15. Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol 68:151-162, 2005.
16. Ellis ME, Al-Hokail AA, Clink HM, y col. Double-blind randomized study of the effect of infusion rates on toxicity of amphotericin B. Antimicrob Agents Chemother 36:172-179, 1992.
17. Zotchev SB. Polyene macrolide antibiotics and their applications in human therapy. Curr Med Chem 10:211-223, 2003.
18. Johnson MD, Perfect JR. Caspofungin: first approved agent in a new class of antifungals. Expert Opin Pharmacother 4:807-823, 2003.
19. Wiederhold NP, Lewis RE, Wiederhold NP, Lewis RE. The echinocandin antifungals: an overview of the pharmacology, spectrum and clinical efficacy. Expert Opin Investig Drugs 12:1313-1333, 2003.
20. Ghannoum MA, Rice L. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Review 12:501-517, 1999.
21. Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 42:285-318, 2005.
22. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Second Edition. NCCLS document M27-A2 NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2002.
23. Santangelo R, Paderu P, Delmas G y col. Efficacy of oral cochleate-AMB in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356-2360, 2000.
24. Lincopan N, Mamizuka EM, Carmona-Ribeiro AM. In vitro activity of a novel AMB formulation with synthetic cationic bilayer fragments. J Antimicrob Chemother 52:412-418, 2003.
25. Espuelas MS, Legrand P, Campanero MA y col. Polymeric carriers for amphotericin B in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother 52:419-427, 2003.
26. Fukui H, Koike T, Nakawa T y col. Comparison of LNS-AmB, a novel low-dose formulation of amphotericin B with lipid nano-sphere (LNS), with commercial lipid-based formulations. Int J Pharm 28:101-112, 2003.
27. Brime B, Molero G, Frutos P, Frutos G. Comparaitive therapeutic efficacy of a novel lyophilised amphotericin B lecithin-based oil-water microemulsion and deoxycholate-amphotericin B in immunocompetent and neutropenic mice infected with Candida albicans. Eur J Pharm Sci 22:451-458, 2004.
28. Tiyaboonchai W, Woiszwillo J, Middaugh CR. Formulation and characterizactionof amphotericin B-polyethylenimine-dextran sulfate nanoparticles. J Pharm Sci 90:902-914, 2001.
29. Arikan S, Rex JH, Nystatin LF. Curr Opin Investig Drugs 2:488-495, 2001.
30. Alonso-Vargas R, González-Alvarez L, Ruesga MT y col. In vitro activity of a liposomal nystatin formulation (Nyotran) against Cryptococcus neoformans. Rev Iberoam Micol 17:90-92, 2000.
31. Ng AW, Wasan KM, López-Berestein G. Liposomal polyene antibiotics. Methods Enzymol 391:304-313, 2005.
32. Carrillo-Muñoz AJ, Quindós G, Tur C y col. In-vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate, fluconazole and itraconazole. J Antimicrob Chemother 44:397-401, 1999.
33. Swenson CE, Perkins WR, Roberts P y col. In vitro and in vivo antifungal activity of amphotericin B lipid complex: are phospholipases important? Antimicrob Agents Chemother 42:767-71, 1998.
34. Gottfredsson M, Jessup CJ, Cox GM, Perfect JR, Ghannoum MA. Fungal phospholipase activity and susceptibility to lipid preparations of amphotericin B. Antimicrob Agents Chemother 45:3231-3233, 2001.
35. Tomii Y. Lipid formulation as a drug carrier for drug delivery. Curr Pharm Des 8:467-474, 2002.
36. Adams ML, Andes DR, Kwon GS. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules 4:750-757, 2003.
37. Stewart M, Capon RJ, Lacey E, Tennant S, Gill JH. Calbistrin E and two other new metabolites from an australian isolate of Penicillium striatisporum. J Nat Prod 68:581-584, 2005.
38. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol 11:272-279, 2003.
39. Hossain MA, Ghannoum MA. New investigational antifungal agents for treating invasive fungal infections. Expert Opin Investig Drugs 9:1797-1813, 2000.
40. Hossain MA, Ghannoum MA. New developments in chemotherapy for non-invasive fungal infections. Expert Opin Investig Drugs 10:1501-1511, 2001.
41. Courtney R, Pai S, Laughlin M, Lim J, Batra V. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother 47:2788-2795, 2003.
42. Arikan S, Rex JH. New agents for the treatment of systemic fungal infections-current status. Expert Opin Emerg Drugs 7:3-32, 2002.
43. Arikan S, Rex JH. Ravuconazole. Curr Opin Investig Drugs 3:555-561, 2002.
44. Bartrolí J, Turmo E, Algueró M y col. New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4(3H)-quinazolinones. J Med Chem 41:1869-1882, 1998.
45. Bard M, Lees ND, Turi T y col. Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 28:963-967, 1993.
46. Leber R, Fuchsbichler S, Klobucnikova V y col. Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 47:3890-3900, 2003.
47. Quindós G, Ruesga MT, Martín-Mazuelos E y col. In-vitro activity of 5-fluorocytosine against 1,021 Spanish clinical isolates of Candida and other medically important yeasts. Rev Iberoam Micol 21:63-69, 2004.
48. Kerridge D. Mode of action of clinically important antifungal drugs Adv Microb Physiol 27:1-72, 1986.
49. Parrish JP, Kastrinsky DB, Wolkenberg SE, Igarashi Y, Boger DL. DNA alkylation properties of yatakemycin. J Am Chem Soc 25:10971-10976, 2003.
50. Igarashi Y, Futamata K, Fujita T y col. Yatakemycin, a novel antifungal antibiotic produced by Streptomyces sp. TP-A0356 J Antibiot (Tokyo) 56:107-113, 2003.
51. Yeates C. Icofungipen. Curr Opin Investig Drugs 6:838-844, 2005.
52. Petraitiene R, Petraitis V, Kelaher AM y col. Efficacy, plasma pharmacokinetics, and safety of icofungipen, an inhibitor of Candida isoleucyl-tRNA synthetase, in treatment of experimental disseminated candidiasis in persistently neutropenic rabbits. Antimicrob Agents Chemother 49:2084-2092, 2005.
53. Marcilla A, Valentin E, Sentandreu R. The cell wall structure: developments in diagnosis and treatment of candidiasis. Int Microbiol 1:107-116, 1998.
54. Ruiz-Herrera J, San-Blas G. Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 3:77-91, 2003.
55. Vicente MF, Basilio A, Cabello A, Peláez F. Microbial natural products as a source of antifungals. Clin Microbiol Infect 9:15-32, 2003.
56. De Lucca AJ, Walsh TJ. Péptidos antifúngicos: origen, actividad y potencial terapéutico. Rev Iberoam Micol 17:116-120, 2000.
57. Jarvis B, Figgitt DP, Scott LJ. Micafungin. Drugs 64:969-982, 2004.
58. Vázquez JA. Anidulafungin: a new echinocandin with a novel profile. Clin Ther 27:657-673, 2005.
59. Moudgal V, Little T, Boikov D, Vázquez JA. Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother 49:767-769, 2005.
60. Fujita K, Tani K, Usuki Y, Tanaka T, Taniguchi, M. Growth inhibition dependent on reactive oxygen species generated by C9-UK-2A, a derivative of the antifungal antibiotic UK-2A in Saccharomyces cerevisiae. J Antibiot (Tokyo) 57:511-517, 2004.
61. Georgopapadakou NH. New cell wall targets for antifungal drugs. Expert Opin Investig Drugs 10:269, 2001.
62. Bujdakova H, Kuchta T, Sidoova E, Gvozdjakova A. Anti-Candida activity of four antifungal benzothiazoles. FEMS Microbiol Lett 112:329-333, 1993.
63. Lodge JK, Jackson-Machelski E, Devadas B y col. N-myristoylation of Arf proteins in Candida albicans: an in vivo assay for evaluating antifungal inhibitors of myristoyl-CoA: protein N-myristoyltransferase Microbiology 357-366, 1997.
64. Kawasaki K, Masubuchi M, Morikami K. Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 3. Bioorg Med Chem Lett 13:87-91, 2003.
65. Ebiike H, Masubuchi M, Liu P. et al (2002) Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 2. Bioorg Med Chem Lett 12:607-610, 2002.
66. Selitrennikoff CP, Nakata, M. New cell wall targets for antifungal drugs. Curr Opin Investig Drugs 4:200, 2003.
67. Bobek LA, Situ H. MUC7 20-Mer: investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob Agents Chemother 47:643, 2003.
68. Jacob MR, Walker LA. Natural products and antifungal drug discovery. Methods Mol Med 118:83-109, 2005.
69. López SN, Castelli MV, De Campos F. In vitro antifungal properties structure-activity relationships and studies on the mode of action of N-phenyl, N-aryl, N-phenylalkyl maleimides and related compounds. Arzneimittelforschung 55:123-132, 2005.
70. Liu CH, Meng JC, Zou WX, Huang LL, Tang HQ, Tan RX. Antifungal metabolite with a new carbon skeleton from Keissleriella sp. YS4108, a marine filamentous fungus. Planta Med 68:363-365, 2002.
71. Deschenes RJ, Lin H, Ault AD, Fassler JS. Antifungal properties and target evaluation of three putative bacterial histidine kinase inhibitors. Antimicrob Agents Chemother 43:1700-1703, 1999.
72. Singh N, Heitman J. Antifungal attributes of immunosuppressive agents: new paradigms in management and elucidating the pathophysiologic basis of opportunistic mycoses in organ transplant recipients. Transplantation 77:795-800, 2004.
73. Wong GK, Griffith S, Kojima I, Demain AL. Antifungal activities of rapamycin and its derivatives, prolylrapamycin, 32-desmethylrapamycin, and 32-desmethoxyrapamycin. J Antibiot (Tokyo) 51:487-491, 1998.
74. Sugimoto Y, Sakoh H, Yamada K. IPC synthase as a useful target for antifungal drugs. Curr Drug Targets Infect Disord 4:311-322, 2004.
75. Nikawa H, Fukushima H, Makihira S, Hamada T, Samaranayake LP. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis 10:221-228, 2004.
76. Niewerth M, Schaller M, Korting HC, Hube B. Mode of action of ciclopiroxolamine on Candida albicans. Mycoses 45(Suppl.1):63-68, 2002.
77. Baev D, Li XS, Dong J, Keng P, Edgerton, M. Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect Immun 70:4777-4784, 2002.
78. We, GX, Bobek LA. In vitro synergic antifungal effect of MUC7 12-mer with histatin-5 12-mer or miconazole. J Antimicrob Chemother 53:750-758, 2004.
79. Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56:285-289, 2004.
80. Domínguez JM, Martín JJ. Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42:2279-2283, 1998.
81. Lass-Flörl C, Füchs D, Ledochowski M, Speth C, Dierich MP, Würzner R. Antifungal properties of 5-hydroxytryptamine (serotonin) against Candida species in vitro. J Med Microbiol 52:169-171, 2003.
82. Lass-Flörl C, Dierich MP, Fuchs D, Semenitz E, Ledochowski M. Antifungal activity against Candida species of the selective serotonin-reuptake inhibitor, sertraline. Clin Infect Dis 33:135-136, 2001.
83. Park Y, Lee DG, Hahm KS. HP(2-9)-magainin 2(1-12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane. J Pept Sci 10:204-209, 2004.
84. Renault S, De Lucca AJ, Boue S, Bland JM, Vigo CB, Selitrennikoff CP. CAY-1 a novel antifungal compound from cayenne pepper. Med Mycol 41,75, 2003.
85. Theis T, Wedde M, Meyer V, Stahl U. The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47,588, 2003.
86. Holden DW, Tang CM, Smith JM. Molecular genetics of Aspergillus pathogenicity. Antonie Van Leeuwenhoek 65:251-255, 1994.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008