REVISAN LOS MECANISMOS DE RESISTENCIA A LA TIGECICLINA

(especial para SIIC © Derechos reservados)
La tigeciclina es un antibiótico promisorio, a pesar de que algunas especies como Pseudomonas aeruginosa y Proteus spp. muestran menor sensibilidad y de que se notificaron casos de resistencia entre numerosos microorganismos. La resistencia cruzada con las tetraciclinas es muy limitada. Sin embargo, las bombas de expulsión activa de múltiples fármacos pueden comprometer la utilización de la tigeciclina en el futuro.
fluit9.jpg Autor:
Ad c. Fluit
Columnista Experto de SIIC

Institución:
Eijkman-Winkler Institute, University Medical Center Utrecht


Artículos publicados por Ad c. Fluit
Recepción del artículo
20 de Junio, 2006
Aprobación
27 de Junio, 2006
Primera edición
5 de Octubre, 2006
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La tigeciclina es un antibiótico nuevo, obtenido a partir de la tetraciclina. La resistencia a este agente se mantiene baja, aunque ya se notificó la existencia de cepas con menor sensibilidad y con resistencia. La resistencia a la tigeciclina no se debe al flujo activo mediado por Tet ni a la protección ribosomal observados con las tetraciclinas. Sin embargo, las bombas de expulsión activa de múltiples fármacos parecen estar implicadas en este fenómeno y pueden comprometer la utilización futura de la tigeciclina.

Palabras clave
Tigeciclina, resistencia, tetraciclina, mecanismo de resistencia


Artículo completo

(castellano)
Extensión:  +/-5.15 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Tigecycline is a novel antibiotic derived from tetracycline. Resistance to tigecycline is still low, although isolates with reduced susceptibility and resistance have been reported. Resistance to tigecycline is not caused by Tet-mediated efflux or ribosomal protection seen for tetracycline. However, multidrug efflux pumps appear to be involved in resistance to tigecycline and may threaten its use in the future.

Key words
Tigecycline, tetracycline, resistance, mechanism of resistance


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Infectología
Relacionadas: Bioquímica, Farmacología, Genética Humana, Medicina Farmacéutica, Medicina Interna



Comprar este artículo
Extensión: 5.15 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Ad C. Fluit, Eijkman-Winkler Institute, University Medical Center Utrecht, 3508 GA, PO Box 85500, Utrecht, Países Bajos
Bibliografía del artículo
1. Chopra I, Hawkey, PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 1992; 29(3):245-77.
2. Website. http://www.fda.gov/cder/rdmt/InternetPriority05.htm [Accessed 5-30-2006].
3. Petersen PJ, Jacobus NV, Weis WJ, Sum PE, Testa RT. In vitro and in vivo antibacterial activities of a novel glycylglycine, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 1999; 43(4):738-44.
4. Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 1996; 165(6):359-69.
5. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65(2):232-60.
6. Projan SJ. Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent. Pharmacother 2000; 20(9Pt2):219S-23S.
7. Sum PE, Sum FW, Projan SW. Recent developments in tetracycline antibiotics. Curr Pharm Des 1998; 4(2):119-32.
8. Rasmussen BA, Gluzman Y, Tally FP. Inhibition of protein synthesis occurring on tetracycline-resistant, TetM-protected ribosomes by a novel class of tetracyclines, the glycylcyclines. Antimicrob Agents Chemother 1994; 38(7):1658-60.
9. Bauer G, Berens C, Projan SJ Hillen W. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother 2004; 53(4):592-9.
10. Fluit AC, Florijn A, Verhoef J. Milatovic D. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother 2005; 49(4):1636-8.
11. Someya Y, Yamaguchi A, Sawai T. A novel glycylcycline, 9-(N,N-dimethylglycylamido)-6-demethyl-6-deoxytetracycline, is neither transported nor recognized by the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Antimicrob Agents Chemother 1995; 39(1):247-9.
12. Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A. Effects of efflux transporter genes on suscpetibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 2004; 48(6):2179-84.
13. Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2003; 47(3):972-8.
14. Ruzin A, Keeney D, Bradford PA. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicorb Agents Chemother 2005; 49(2):791-3.
15. Hoban DJ, Bouchillon SK, Johnson BM, Johnson JL, Dowzicky MJ. In vitro activity of tigecycline against 6792 Gram-negative and Gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program 2004). Diagn Microbiol Infect Dis 2005; 52(3):215-27.
16. Fritsche TR, Strabala PA, Sader HS, Dowzicky MJ, Jones, RN. Activity of tigecycline tested against a global collection of Enterobacteriaceae, including tetracycline-resistant isolates. Diagn Microbiol Infect Dis 2005; 52(3):209-13.
17. Sader HS, Jones RN, Stilwell, MG, Dowzicky MJ, Fritsche TR. Tigecycline activity tested against 26,474 bloodstream infection isolates: a collection from 6 continents. Diagn Microbiol Infect Dis 2005; 52(3):181-6.
18. Jones CH, Tuckman M, Howe AYM, et al. Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among Staphylococcus aureus isolates from phase 3 clinical trials of tigecycline for complicated skin and skin structure infections. Antimicrob Agents Chemother 2006; 50(2):505-10.
19. Visalli MA, Murphy E, Projan SJ, Bradford, PA. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 2003; 47(2):665-9.
20. Ruzin A, Visalli MA, Keeney D, Bradford PA. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2005; 49(3):1017-22.
21. Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT. In vitro and in vivo antibacterial activities of a novel glycylclycine, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 1999; 43(4):738-44.
22. Garvis S, Mei JM, Ruiz-Albert J, Holden DW. Staphylococcus aureus svrA: a gene required for virulence and expression of the agr locus. Microbiol 2002; 148(10):3235-43.
23. Schmitz F-J, Fluit AC. Mechanisms of resistance. In: Infectious Diseases. Armstrong D, Cohen S eds. Mosby 1999, p. 7.2.1-14.
24. Morita Y, Kodama K, Shiota S, et al. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 1998; 42(7):1778-82.
25. McAleese F, Petersen P, Ruzin A, et al. A Novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 2005; 49(5):1865-71.
26. Moore IF, Hughes DW, Wright GD. Tigecycline is modified by the flavin-dependent mooxygenase TetX. Biochem 2005; 44(35):11829-35.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008