INMUNIDAD Y AUTOINMUNIDAD A LAS PROTEINAS DE SHOCK TERMICO: DE LA ATEROESCLEROSIS A LA PROLIFERACION NEOINTIMAL

(especial para SIIC © Derechos reservados)
La inmunidad a las proteínas de shock térmico puede promover la reestenosis luego de la angioplastia, lo que provee un vínculo entre los patógenos infecciosos y la reestenosis.
Autor:
Yoav Michowitz
Columnista Experto de SIIC

Institución:
Department of Cardiology Tel Aviv Sourasky Medical Center Sackler Faculty of Medicine Tel Aviv University Tel Aviv, Israel


Artículos publicados por Yoav Michowitz
Coautores
Jacob George, Senior Lecturer.*  Gad Keren, Professor.* 
The Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.*
Recepción del artículo
29 de Octubre, 2004
Aprobación
22 de Diciembre, 2004
Primera edición
26 de Abril, 2005
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Las proteínas de shock térmico (HSP) son producidas por la mayoría de las células humanas y no humanas. Participan en la defensa celular contra estímulos nocivos al servir como acompañantes (chaperonas) moleculares. Sin embargo, están implicadas en la patogénesis de las enfermedades autoinmunes por medio del mimetismo molecular. En este contexto, su participación en el inicio y progresión de la aterogénesis fue estudiada e informada extensamente en años recientes. La reestenosis es el principal obstáculo para el éxito a largo plazo de la angioplastia coronaria por balón. Las respuestas inflamatorias y proliferativas son elementos clave en este proceso. Además, se comunicó una asociación entre patógenos infecciosos y reestenosis. Análogamente a la ateroesclerosis, también se estudió el papel de la inmunidad a las HSP en la patogénesis de la reestenosis en un modelo de lesión carotídea en ratas. La inmunización de las ratas, tanto con HSP-65 como con HSP-70, incrementó el índice neointimal/medial significativamente. En este proceso parecen participar tanto la respuesta inmune celular como humoral. En conclusión, estas observaciones suponen que la inmunidad a las HSP puede promover la reestenosis luego de la angioplastia, lo que provee un vínculo entre patógenos infecciosos y reestenosis. Son necesarios más estudios para clarificar el significado clínico de estos hallazgos, especialmente en una era de prótesis endovasculares (stent) que liberan lentamente drogas con propiedades antiinflamatorias y antiproliferativas.

Palabras clave
HSP, ateroesclerosis, reestenosis, sistema inmune


Artículo completo

(castellano)
Extensión:  +/-4.41 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Heat shock proteins (HSPs) are produced by most human and non-human cells. They participate in cellular defense against noxious stimuli by serving as molecular chaperones. However, they are implicated in the pathogenesis of autoimmune diseases by way of molecular mimicry. In this context, their participation in the initiation and progression of atherogenesis have been studied and reported extensively during recent years. Restenosis is a major obstacle to the long-term success of coronary balloon angioplasty. Inflammatory and proliferative responses are key elements in this process. Moreover, an association between infectious pathogens and restenosis has been reported. By analogy to atherosclerosis, the role of immunity to HSPs in the pathogenesis of restenosis was also studied. This was tested on a rat model of carotid injury. Immunizing rats with both HSP-65 and HSP-70 increased the neointimal/medial ratio significantly. Both the humoral and cellular immune arms appear to participate in this process. In conclusion these observations imply that immunity to HSP can promote restenosis following angioplasty, providing a possible link between infectious pathogens and restenosis. Further studies are needed to clarify the clinical significance of these observations, especially in the era of drug eluting stents.

Key words
HSP, atherosclerosis, restenosis, immune system


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Cirugía
Relacionadas: Cardiología, Medicina Interna



Comprar este artículo
Extensión: 4.41 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
George, Jacob
Bibliografía del artículo
  • Gething MJ. Protein folding. The difference with prokaryotes. Nature. 1997; 388:329-331.
  • Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res. 1998; 83:117-32.
  • Zugel U, Kaufmann SH. Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev. 1999; 12:19-39.
  • Kaufmann SHE, Schoel B. Heat shock protein antigens in immunity against infection and self. In: Morimoto RI, Tissiers A, Georgoupolus C, editors. Stress proteins in biology and medicine. Cold Spring Harbor, NY: Cold Spring Harbor Press, 1994:495-531.
  • Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol. 2002; 22:1547-59.
  • Lamb DJ, El-Sankary W, Ferns GA. Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis. 2003; 167:177-85.
  • Bason C, Corrocher R, Lunardi C, et al. Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet. 2003; 362:1971-7.
  • Libby P, Egan D, Skarlatos S. Roles of infectious agents in atherosclerosis and restenosis: an assessment of the evidence and need for future research. Circulation. 1997; 96:4095-103.
  • George J, Greenberg S, Barshack I, et al. Accelerated intimal thickening in carotid arteries of balloon-injured rats after immunization against heat shock protein 70. J Am Coll Cardiol. 2001; 38:1564-9.
  • George J, Greenberg S, Barshack I, et al. Immunity to heat shock protein 65--an additional determinant in intimal thickening. Atherosclerosis. 2003; 168:33-8.
  • Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999; 340:115-26.
  • Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-74.
  • Xu Q, Dietrich H, Steiner HJ, et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb. 1992; 12:789-99.
  • George J, Shoenfeld Y, Afek A, et al. Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler Thromb Vasc Biol. 1999; 19:505-10.
  • Xu Q, Kleindienst R, Schett G, et al. Regression of arteriosclerotic lesions induced by immunization with heat shock protein 65-containing material in normocholesterolemic, but not hypercholesterolemic, rabbits. Atherosclerosis. 1996; 123:145-55.
  • Xu Q, Kleindienst R, Waitz W, et al. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J Clin Invest. 1993; 91:2693-702.
  • George J, Afek A, Gilburd B, et al. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J Am Coll Cardiol. 2001; 38:900-5.
  • Kanwar RK, Kanwar JR, Wang D, et al. Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21:1991-7.
  • Kleindienst R, Xu Q, Willeit J, et al. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol. 1993; 142:1927-37.
  • Hammerer-Lercher A, Mair J, Bonatti J, et al. Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res. 2001; 50:115-24.
  • Johnson AD, Berberian PA, Tytell M, Bond MG. Atherosclerosis alters the localization of HSP70 in human and macaque aortas. Exp Mol Pathol. 1993; 58:155-68.
  • Bobryshev YV, Lord RS. Expression of heat shock protein-70 by dendritic cells in the arterial intima and its potential significance in atherogenesis. J Vasc Surg. 2002; 35:368-75.
  • Xu Q, Willeit J, Marosi M, et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet. 1993; 341:255-9.
  • Zhu J, Quyyumi AA, Rott D, et al. Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: evidence for an autoimmune component of atherogenesis. Circulation. 2001; 103:1071-5.
  • Prohaszka Z, Duba J, Horvath L, et al. Comparative study on antibodies to human and bacterial 60 kDa heat shock proteins in a large cohort of patients with coronary heart disease and healthy subjects. Eur J Clin Invest. 2001; 31:285-92.
  • Chan YC, Shukla N, Abdus-Samee M, et al. Anti-heat-shock protein 70 kDa antibodies in vascular patients. Eur J Vasc Endovasc Surg. 1999; 18:381-5.
  • Kervinen H, Huittinen T, Vaarala O, et al. Antibodies to human heat shock protein 60, hypertension and dyslipidemia. A study of joint effects on coronary risk. Atherosclerosis. 2003; 169:339-44.
  • Harats D, Yacov N, Gilburd B, et al. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. : J Am Coll Cardiol. 2002; 40:1333-8.
  • Libby P, Tanaka H. The molecular bases of restenosis. Prog Cardiovasc Dis. 1997; 40:97-106.
  • Libby P, Schwartz D, Brogi E, et al. A cascade model for restenosis. A special case of atherosclerosis progression. Circulation. 1992; 86:III47-52.
  • Beyar R. Novel approaches to reduce restenosis. Ann N Y Acad Sci. 2004; 1015:367-78.
  • Schett G, Xu Q, Amberger A, et al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest. 1995; 96:2569-77.
  • Mayr M, Metzler B, Kiechl S, et al. Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation. 1999; 99:1560-6.
  • Schett G, Metzler B, Mayr M, et al. Macrophage-lysis mediated by autoantibodies to heat shock protein 65/60. Atherosclerosis. 1997; 128:27-38.
  • Keren G, Keren P, Barshack I, et al. The effect of intravenous immunoglobulins on intimal thickening in a mouse model of arterial injury. Atherosclerosis. 2001; 159:77-83.
  • Schofer J, Schluter M, Gershlick AH, et al; E-SIRIUS Investigators. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS). Lancet. 2003; 362:1093-9.
  • Moses JW, Leon MB, Popma JJ, et al; SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003; 349:1315-23.
  • Stone GW, Ellis SG, Cox DA, et al; TAXUS-IV Investigators. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS-IV trial. Circulation. 2004; 109:1942-7.
  •  
     
     
     
     
     
    Clasificado en
    Artículos originales>
    Expertos del Mundo

    Especialidad principal:
    Cirugía


    Relacionadas:
    Cardiología
    Medicina Interna
     
     
     
     
     
     
    Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
    ua31618
    Home

    Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008