MECANISMOS DE ACCION IMPLICADOS EN LOS EFECTOS ANTIDIABETICOS DE LAS TIAZOLIDINEDIONAS

(especial para SIIC © Derechos reservados)
El mecanismo de acción responsable de los efectos antidiabéticos de las tiazolidinedionas radica en la aparente paradoja que existe entre la utilización de fármacos antidiabéticos que favorecen la adipogénesis para el tratamiento de la diabetes tipo 2, cuando el factor de riesgo más importante para el desarrollo de esta patología es la obesidad.
vazquezca9.jpg Autor:
Manuel Vázquez-carrera,
Columnista Experto de SIIC

Institución:
Unidad de Farmacología Facultad de Farmacia Barcelona, España


Artículos publicados por Manuel Vázquez-carrera,
Coautores
Mireia Jové Godino*  Anna Planavila** 
Licenciada en Farmacia, Universidad de Barcelona*
Licenciada en Biología, Universidad de Barcelona**
Recepción del artículo
21 de Abril, 2004
Aprobación
2 de Septiembre, 2004
Primera edición
27 de Octubre, 2004
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Las tiazolidinedionas (TZD), también llamadas glitazonas, son una nueva clase de fármacos antidiabéticos que han sido introducidos recientemente para el tratamiento de la diabetes mellitus tipo 2. Las TZD fueron la primera clase de compuestos identificados como ligandos de los receptores activados por proliferadores de peroxisomas γ (peroxisome proliferator-activated receptors, PPAR). La participación de los PPARγ en los efectos farmacológicos de las TZD se basó en estudios que demostraron una excelente correlación entre el efecto hipoglucemiante de estos fármacos y su afinidad por PPARγ. Aunque el músculo es responsable de la utilización de hasta un 80% de la glucosa estimulada por la insulina, se considera que el tejido adiposo es el lugar de acción principal de las TZD. Respecto del mecanismo de acción responsable de los efectos antidiabéticos de las TZD, recientes estudios realizados en animales parecen explicar la aparente paradoja que existe entre la utilización de fármacos antidiabéticos que favorecen la adipogénesis para el tratamiento de la diabetes tipo 2, cuando el factor de riesgo más importante para el desarrollo de esta patología es la obesidad. El objetivo de este artículo es revisar los estudios más relevantes realizados para determinar el mecanismo de acción de las TZD antidiabéticas.

Palabras clave
Tiazolidinedionas, diabetes tipo 2, PPARγ, tejido adiposo, músculo esquelético


Artículo completo

(castellano)
Extensión:  +/-9.12 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Thiazolidinediones (TZD), also called glitazones, are a new class of antidiabetic drugs that have recently been introduced as therapeutic agents for the treatment of type 2 diabetes mellitus. TZD were the first class of compounds to be identified as peroxisome proliferator-activated receptors (PPAR) γ-ligands. The involvement of PPARγ in the pharmacological effects of TZD was supported by studies showing an excellent correlation between the hypoglycemic action of these drugs and their affinity for PPARγ. Despite this evidence, the site of action and the molecular mechanism of TZD remains unclear. Although up to 80% of insulin-stimulated glucose disposal in humans occurs in skeletal muscle, the primary site of action of TZD is thought to be the adipose tissue. Regarding the mechanism of action responsible for the antidiabetic effects of TZD, recent studies performed in animals seem to explain the apparent paradox that lies in using antidiabetic drugs that promote adipogenesis for the treatment of type 2 diabetes, when the major risk factor for the development of this pathology is obesity. The aim of the present article is to review the most relevant studies performed in the search for establishing the mechanism of action of antidiabetic TZD.

Key words
Thiazolidinediones, type 2 diabetes mellitus, PPARγ, adipose tissue, skeletal muscle


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Endocrinología y Metabolismo
Relacionadas: Bioquímica, Farmacología, Inmunología, Medicina Farmacéutica, Nutrición



Comprar este artículo
Extensión: 9.12 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Vázquez-Carrera, Manuel
Patrocinio y reconocimiento:
Los estudios realizados en el Departamento de Farmacología y Química Terapéutica fueron subvencionados por la Fundació Privada Catalana de Nutrició i Lípids (FPCNL) y por el Ministerio de Ciencia y Tecnología de España (SAF00-0201, SAF 2003-01232 y BFI02-05167). También agradecemos a la Generalitat de Catalunya la subvención 2001SGR00141. Mireia Jové recibió una beca FPI del Ministerio de Ciencia y Tecnología de España. Anna Planavila cuenta con una beca de la División IV de la Universidad de Barcelona.
Bibliografía del artículo
  1. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and Type II diabetes. Diabetes 1996, 45: 1661-1669.
  2. Spiegelman BM. PPARγ: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998, 47: 507-514.
  3. Lowell BB. PPARγ: an essential regulator of adipogenesis and modulator of fat cell function. Cell 1999, 99: 230-253.
  4. Huli B, McCarthy PA, Gibbs EM. The glitazone family of antidiabetic agents. Curr. Pharm. Des. 1996, 2: 85-102.
  5. Ibrahimi A, Teboul L, Gaillard D y col. Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Mol. Pharmacol. 1994, 46: 1070-1076.
  6. Kletzien RF, Clarke SD, Ulrich RG. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol. Pharmacol. 1992, 41: 393-398.
  7. Kletzien RF, Foellmi LA, Harris PK y col. Adipocyte fatty acid-binding protein: regulation of gene expression in vivo and in vitro by an insulin-sensitizing agent. Mol. Pharmacol. 1992, 42: 558-562.
  8. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 1994, 79: 1147-1156.
  9. Forman BM, Tontonoz P, Chen J y col. 15-Deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 1995, 83: 803-812.
  10. Lehmann JM, Moore LB, Smith-Oliver y col. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 1995, 270: 12953-12956.
  11. A unified nomenclature system for the nuclear receptor superfamily. Cell 1999, 97:161-163.
  12. Braissant O, Foufelle F, Scotto C y col. Differential expression of peroxisome proliferator-activated receptors (PPAR): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137: 354-366.
  13. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 1999, 20:649-688.
  14. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPAR): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 2000, 49:497-505.
  15. Daynes RA, Jones DC. Emerging roles of PPAR in inflammation and immunity. Nat. Rev. Immunol. 2002, 2: 748-759.
  16. Ruan H, Pownall HJ, Lodish HF. Troglitazone antagonizes tumor necrosis factor-alpha-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kappaB. J. Biol. Chem. 2003, 278:28181-28192.
  17. Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol. Cell. Biol. 2000, 20:4699-46707.
  18. Kamei Y, Xu L, Heinzel T y col. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996, 85:403-414.
  19. Delerive P, De Bosscher K, Besnard S y col. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem. 1999, 274:32048-32054.
  20. Delerive P, Martin-Nizard F, Chinetti G y col. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circulation Res. 1999, 85:394-402.
  21. Desreaumaux P, Dubuquoy L, Nutten S y col. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. J. Exp. Med. 2001, 193:827-838.
  22. Willson TM, Cobb JE, Cowan DJ y col. The structure-activity relationship between peroxisome-proliferator activated receptor γ agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 1996, 39: 665-668.
  23. Olefsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptor agonists. J. Clin. Invest. 2000, 106: 467-472.
  24. Kruszynska YT, Mukherjee R, Jow L y col. Skeletal muscle peroxisome proliferator-activated receptor-γ expression in obesity and non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1998, 101: 543-548.
  25. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, y col. Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J. Clin. Invest. 1997, 99: 2416-2422.
  26. Park KS, Ciaraldi TP, Abrams-Carter L y col. PPARγ gene expression is elevated in skeletal muscle of obese and type II diabetic subjects. Diabetes 1997, 46: 1230-1234.
  27. Fujiwara T, Yoshioka S, Yoshioka T y col. Characterization of CS-045, a new oral antidiabetic agent. II. Effects on glycemic control and pancreatic islet structure at a late stage of the diabetic syndrome in C57BL/Ksj-db/db mice. Metabolism 1991, 40: 1213-1218.
  28. Fujiwara T, Yoshioka S, Yoshioka T y col. Characterization of new oral antidiabetic agent CS-045: studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 1988, 37: 1549-1558.
  29. Lee MK, Miles PD, Khoursheed M y col. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994, 43: 1435-1439.
  30. Miles PD, Romeo OM, Higo K y col. TNFα-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes 1997, 46: 1678-1683.
  31. Miles PG, Higo K, Romeo OM y col. Troglitazone prevents hyperglycemia-induced but not glucosamin-induced insulin resistance. Diabetes 1998, 47: 395-400.
  32. Kraegen EW, James DE, Jenkins AB y col. A potent in vivo effect of ciglitazone on muscle insulin resistance induced by high fat feeding of rats. Metabolism 1989, 38: 1089-1093.
  33. Arakawa K, Inamasu M, Matsumoto M y col. Novel benzoxazole 2,4-thiazolidinediones as potent hypoglycemic agents. Synthesis and structure-activity relationships. Chem. Pharm. Bull. 1997 45:1984-1993.
  34. Reginato MJ, Bailey ST, Krakow SL y col. A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor gamma-activating properties. J. Biol. Chem. 1998, 273: 32679-32684
  35. Inzucchi SE, Maggs DG, Spollett GR, Page SL y col. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N. Engl. J. Med. 1998, 338: 867-872.
  36. Burant CF, Sreenen S, Hirano KI y col. Troglitazone action is independent of adipose tissue. J. Clin. Invest. 1997, 100: 2900-2908.
  37. Ciaraldi TP, Gilmore A, Olefsky JM y col. In vitro studies on the action of CS-045. A new anti-diabetic agent. Metabolism 1990, 39: 1056-1062.
  38. Chao L, Marcus-Samuels B, Mason MM y col. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 2000, 106: 1221-1228.
  39. Kim JK, Gavrilova O, Chen Y y col. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J. Biol. Chem. 2000, 275: 8456-8460.
  40. Gavrilova O, Marcus-Samuels B, Graham D y col. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 2000, 105: 271-278.
  41. Ebihara K, Ogawa Y, Masuzaki H y col. Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes 2001, 50: 1440-1448.
  42. Zhang Y, Proenca R, Maffei M y col. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372: 425-432.
  43. Ogawa Y, Masuzaki H, Isse N y col. Molecular cloning of rat obese cDNA and augmented gene expression in genetically obese Zucker fatty (fa/fa) rat. J. Clin. Invest. 1996, 96: 1280-1287.
  44. Maffei H, Hallas J, Ravussin E y col. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA obese and weight-reduced subjects. Nature Med. 1995, 1: 1155-1161.
  45. Considine RV, Sinha MK, Heiman ML y col. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334: 292-295.
  46. Montague CT, Farooqi IS, Whitehead JP y col. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997, 387: 903-908.
  47. Strobel A, Issad T, Camoin L y col. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Gent. 1998, 18: 213-215.
  48. Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet 2000 356:254-255.
  49. Hotamisligil GS, Peraldi P, Spiegelman BM. The molecular link between obesity and diabetes. Curr. Opin. Endocrinol. Diabetes 1996, 3: 16-23.
  50. Rebrin K, Steil GM, Mittelman SD y col. Causal linkage between insulin supression of lipolysis and supression of liver glucose output in dogs. J. Clin. Invest. 1996, 98: 741-749.
  51. Barak Y, Nelson MC, Ong ES y col. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell. 1999, 4: 585-595.
  52. Miles PD, Barak Y, Evans RM y col. Improved insulin-sensitivity in mice heterozygous for PPARγ deficiency. J. Clin. Invest. 2000, 105: 287-292.
  53. Kubota N, Terauchi Y, Miki H y col. PPARγ mediates high-fat induced adipocyte hypertrophy and insulin resistance. Mol. Cell 1999, 4: 585-595.
  54. De Vos P, Lefebvre AM, Miller SG y col. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor γ. J. Clin. Invest. 1996, 98: 1004-1009.
  55. Girard J. Is leptin the link between obesity and insulin resistance Diabetes Metab. 1997, 4: 611-617.
  56. Yamauchi T, Waki H, Kamon J y col. Inhibition of RXR and PPARγ ameliorates diet-induced obesity and type 2 diabetes. J. Clin. Invest. 2001, 108: 1001-1013.
  57. Auwerx J. PPARγ, the ultimate thrifty gene. Diabetologia 1999, 42: 1033-1049.
  58. Patti ME, Butte AJ, Crunkhorn S y col. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:8466-8471.
  59. DeFronzo RA, Gunnarsson R, Bjorkman O y col. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J. Clin. Invest. 1985, 76:149-155.
  60. Muoio DM, Way JM, Tanner CJ y col. Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 2002, 51:901-909.
  61. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999, 283:1482-1488.
  62. Brambilla L, Cairo G, Sestili P y col. Mitochondrial respiratory chain deficiency leads to overexpression of antioxidant enzymes. Febs Lett 1997, 418:247-250.
  63. Eaton S, Pourfarzam M, Bartlett K. The effect of respiratory chain impairment of beta-oxidation in rat heart mitochondria. Biochem. J. 1996, 319:633-640.
  64. Perseghin G, Scifo P, De Cobelli F y col. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999, 48:1600-1606.
  65. Oakes ND, Cooney GJ, Camilleri S y col. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes 1997, 46, 1768-1774.
  66. Jove M, Salla J, Planavila A y col. Impaired expression of the mitochondrial DNA-encoded gene NADH dehydrogenase subunit 1 and PPARgamma coactivator-1 in skeletal muscle of ZDF rats: restoration by troglitazone treatment. J. Lipid Res. 2004, 45, 113-123.
  67. Lee HK, Song JH, Shin CS y col. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1998, 42:161-167.
  68. Maassen JA, Janssen GM, Lemkes HH. Mitochondrial diabetes mellitus. J. Endocrinol. Invest. 2002, 25:477-484.
  69. Noda M, Yamashita S, Takahashi N y col. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of betaHC9 cells deficient in mitochondrial DNA transcription. J Biol Chem 2002, 277: 41817-41826.
  70. Puigserver P, Wu Z, Park CW y col. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998, 92:829-839.
  71. Esterbauer H, Oberkofler H, Krempler F y col. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 1999, 62:98-102.
  72. Lin J, Wu H, Tarr PT y col. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418:797-801.
  73. Lin J, Puigserver P, Donovan J y col. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 2002, 277:1645-1648.
  74. Kressler D, Schreiber SN, Knutti D y col. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 2002, 277:13918-13925.
  75. Wu Z, Puigserver P, Andersson U y col. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98:115-124.
  76. Michael LF, Wu Z, Cheatham RB y col. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A. 2001, 98:3820-3825.
  77. Huang X, Eriksson KF, Vaag A y col. Insulin-regulated mitochondrial gene expression is associated with glucose flux in human skeletal muscle. Diabetes 1999, 48: 1508-1514.
  78. Kanazawa A, Nishio Y, Kashiwagi A y col. Reduced activity of mtTFA decreases the transcription in mitochondria isolated from diabetic rat heart. Am. J. Physiol. Endocrinol. Metab. 2002, 282:E778-E785.
  79. Sugden MC, Bulmer K, Holness MJ. Fuel-sensing mechanisms integrating lipid and carbohydrate utilization. Biochem Soc Trans 2001, 29:272-278.
  80. Selak MA, Storey BT, Peterside I, Simmons RA. Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. Am J Physiol Endocrinol Metab. 2003, 285:E130-13.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008