Crónicas de autores

Elisabet Farré Guasch *

Autora invitada por SIIC

El trabajo incide en fuentes alternativas de células madre adultas para ingeniería tisular, de fácil acceso y mínima morbilidad para el paciente. Participación de varias instituciones, UIC (Barcelona, España) y ACTA-VU (Amsterdam, Países Bajos).

CELULAS MADRE DE BOLA ADIPOSA DE BICHAT PARA INGENIERIA TISULAR

La bola adiposa de Bichat, presente en la cavidad oral, es una fuente alternativa de células madre, de fácil acceso para odontólogos y cirujanos orales y con una mínima morbilidad para el paciente. La alta expresión de marcadores angiogénicos y su multipotencialidad las hace interesantes para aplicaciones clínicas en ingeniería tisular.

*Elisabet Farré Guasch
describe para SIIC los aspectos relevantes de su trabajo
BUCCAL FAT PAD, AN ORAL ACCESS SOURCE OF HUMAN ADIPOSE STEM CELLS WITH POTENTIAL FOR OSTEOCHONDRAL TISSUE ENGINEERING: AN IN VITRO STUDY
Tissue Engineering: Part C - Methods,
16(5):1083-1094 Oct, 2010

Esta revista, clasificada por SIIC Data Bases, integra el acervo bibliográfico
de la Biblioteca Biomédica (BB) SIIC.

Institución principal de la investigación
*Universidad Internacional de Catalunya (UIC), Barcelona, España
Profundizar
Imprimir nota
Comprar este artículo
Otros artículos escogidos
Referencias bibliográficas
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143, 1999.

Bruder, S.P., Kurth., A.A., Shea, M., Hayes, W.C., Jaiswal, N., and Kadiyala, S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16,155, 1998

Koga, H., Muneta, T., Nagase, T., Nimura, A., Ju, Y.J., Mochizuki, T., and Sekiya, I. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 333, 207, 2008.

Chen, C.H., Wei, H.J., Lin, W.W., Chiu, I., Hwang, S.M., Wang, C.C., Lee, W.Y., Chang, Y., and Sung, H.W. Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovasc Res 80, 88, 2008.

Nishimori, M., Yamada, Y., Hoshi, K., Akiyama, Y., Hoshi, Y., Morishima, Y., Tsuchida, M., Fukuhara, S., and Kodera, Y. Health-related quality of life of unrelated bone marrow donors in Japan. Blood 99, 1995, 2002.

Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279, 2002.

Aust, L., Devlin, B., Foster, S.J., Halvorsen, Y.D., Hicok, K., du Laney, T., Sen, A., Willingmyre, G.D., and Gimble, J.M. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6, 7, 2004.

Rada, T., Reis, R.L., and Gomes, M.E. Adipose Tissue-Derived Stem Cells and Their Application in Bone and Cartilage Tissue Engineering. Tissue Eng B Rev 15, 113, 2009.

Trottier, V., Marceau-Fortier, G., Germain, L., Vincent, C., and Fradette, J. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26, 2713, 2008.

Aurich H., Sgodda M., Kaltwasser P., Vetter M., Weise A., Liehr T., Brulport M., Hengstler J.G., Dollinger M.M., Fleig W.E., and Christ B.E. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58, 480, 2008.

Banas A., Teratani T., Yamamoto Y., Tokuhara M., Takeshita F., Osaki M., Kawamata M., Kato T., Okochi H., and Ochiya T. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26, 2705, 2008.

Rubina K., Kalinina N., Efimenko A., Lopatina T., Melikhova V., Tsokolaeva Z., Sysoeva V., Tkachuk V., and Parfyonova Y. Adipose Stromal Cells Stimulate Angiogenesis via Promoting Progenitor Cell Differentiation, Secretion of Angiogenic Factors, and Enhancing Vessel Maturation. Tissue Eng A 15, 2039, 2009.

Sierra-Johnson, J., and Johnson, B.D. Facial fat and its relationship to abdominal fat: a marker for insulin resistance? Med Hypotheses 63, 783, 2004.

Abuabara, A., Cortez, A.L., Passeri, L.A., de Moraes, M., and Moreira, R.W. Evaluation of different treatments for oroantral/oronasal communications: experience of 112 cases. Int J Oral Maxillofac Surg 35, 155, 2006.

Alkan, A., Dolanmaz, D., Uzun, E., and Erdem, E. The reconstruction of oral defects with buccal fat pad. Swiss Med Wkly 133, 465, 2003.

Martin-Granizo, R., Naval, L., Costas, A., Goizueta, C., Rodriguez, F., Monje, F., Muñoz, M., and Diaz, F. Use of buccal fat pad to repair intraoral defects: review of 30 cases. Br J Oral Maxillofac Surg 35, 81, 1997.

El Haddad, S.A., Abd El Razzak, M.Y., and El Shall, M. Use of pedicled buccal fat pad in root coverage of severe gingival recession defect. J Periodontol 79, 1271, 2008.


ua40317
Inicio/Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008