PAPEL DE LOS RECEPTORES DE KAINATO EN LA DEPRESION DE LA TRANSMISION SINAPTICA GLUTAMATERGICA EN LA SINAPSIS FIBRA MUSGOSA-CA3 DE HIPOCAMPO

(especial para SIIC © Derechos reservados)
Los receptores de glutamato de tipo kainato participan postsinápticamente en la neurotransmisión y presinápticamente en la modulación de la liberación de neurotransmisor.
rodriguezmoreno9.jpg Autor:
Antonio Rodríguez moreno
Columnista Experto de SIIC

Institución:
UNIVERSIDAD PABLO DE OLAVIDE


Artículos publicados por Antonio Rodríguez moreno
Coautor
José Vicente Negrete Díaz* 
DOCTOR EN PSICOLOGÍA, UNIVERSIDAD PABLO DE OLAVIDE, Sevilla, España*
Recepción del artículo
15 de Abril, 2009
Aprobación
23 de Abril, 2009
Primera edición
26 de Octubre, 2009
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Los receptores de glutamato de tipo kainato (KAR) participan postsinápticamente en la neurotransmisión y presinápticamente en la modulación de la liberación de neurotransmisor. Se ha determinado el papel de los KAR en la modulación de la liberación de neurotransmisor, así como los mecanismos mediante los cuales los KAR inducen una disminución de la liberación de glutamato y si tal efecto tiene un papel en la depresión de larga duración. Para ello se registraron corrientes postsinápticas excitadoras provocadas, empleando la técnica de patch clamp en su configuación de célula completa y potenciales de campo, en rodajas de hipocampo de ratón. La activación de los KAR presinápticos en la sinapsis fibra musgosa-CA3 (MF-CA3) de hipocampo, produce una inhibición de la liberación de glutamato mediada por una proteína Gi/o sensible a la toxina pertúsica e implica la participación de la vía AC/cAMP/PKA; además, esta depresión converge con la mediada por la activación de receptores metabotrópicos de glutamato del Grupo II en la misma sinapsis y con la depresión de larga duración inducida por un protocolo de estimulación de baja frecuencia en la misma sinapsis, lo que sugiere que los receptores de kainato podrían tener algún papel en este tipo de plasticidad.

Palabras clave
kainato, receptores de glutamato, rodajas, hipocampo, modulación, metabotrópico


Artículo completo

(castellano)
Extensión:  +/-7.65 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Glutamate receptors of kainate type (KARs) are postsynaptically involved in synaptic transmission and presynaptically they modulate neurotransmitter release at mossy fiber-CA3 synapses. We have determined the role of KARs in the modulation of glutamate release, the mechanisms involved in KARs-mediated depression of glutamate release and the effect of this depression in long-term depression (LTD), a form of presynaptic plasticity at this synapse. We recorded excitaroty postsynaptic currents by using whole-cell configuration of patch clamp technique and additionally we performed some extra cellular recordings in mice slices. The activation of presynaptic KARs produces an inhibition of glutamate release at MF-CA3 synapse that is mediated by a G-protein sensitive to pertussis toxin and involves the AC/cAMP/PKA signalling cascade. The depression mediated by activation of KARs converges with the depression mediated by the activation of group II mGluRs at the same synapse and with induced LTD by using a low frequency stimulation protocol, suggesting that KARs have a role in this type of plasticity.

Key words
kainate, glutamate receptors, slices, hippocampus


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Neurología
Relacionadas: Bioquímica, Diagnóstico por Laboratorio, Salud Mental



Comprar este artículo
Extensión: 7.65 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Antonio Rodríguez Moreno, Universidad Pablo de Olavide (Edificio 21), 41013, Ctra. de Utrera km 1, 41013, Sevilla (España), Sevilla, España
Bibliografía del artículo

1. Purves D, Augustine G, Fitzpatrick D, Hall W, LaMantia A, McNamara J, Williams. Neuroscience Third Edition. Sinauer Associates, Inc. USA, pp. 137-145, 2004.
2. Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34(1):1-26, 1995.
3. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 51(1):7-61, 1999.
4. Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res Rev 31(2-3):288-294, 2000.
5. Lerma J, Paternain AV, Rodríguez Moreno A, López García JC. Molecular physiology of kainate receptors. Physiol Rev 81:971-998, 2001.
6. Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 29:83-120, 1999.
7. Kandel ER, Jessell TM, Schwartz JH eds. Principles of neuroscience. 4th ed., McGraw-Hill, New York, USA, pp. 1227-1277, 2000.
8. Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron 60(4):543-54, 2008.
9. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18-41, 2008.
10. Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus:a neural network approach to causality. Nat Rev Neurosci 9(1):65-75, 2008.
11. Butz M, Wörgötter F, Van Ooyen A. Activity-dependent structural plasticity. Brain Res Rev doi:10.1016/j, 2009.
12. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S. Sequence and expression of a metabotropic glutamate receptor. Nature 349:760-5, 1991.
13. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau R, Pin JP. Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev 60(1):43-56, 2009.
14. Luján R, Roberts JDB, Shigemoto R, Somogyi P. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neurochem 13:219-41, 1997.
15. Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE (255):16, 2004.
16. Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55(7):1081-94, 2008.
17. García S, Pazos A (Eds.) Receptores para neurotransmisores. Ediciones en Neurociencias, Barcelona, pp. 241-244, 2003.
18. Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8(2):101-13, 2007.
19. Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165-204, 1981.
20. Agrawal SG, Evans RH. The primary afferent depolarizing action of kainate in the rat. Br J Pharmacol 87(2):345-55, 1986.
21. Huettner JE. Glutamate receptor channels in DRG neurons:activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5:255-266, 1990.
22. Lerma J. Kainate receptor physiology. Curr Opin Pharmacol 6(1):89-97, 2006.
23. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 17:31-108, 1994.
24. Bettler B, Boulter J, Hermans-Borgmeyer I, y col. Cloning of a novel glutamate receptor subunit, GluR5:expression in the nervous system during development. Neuron 5:583-595, 1990.
25. Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351(6329):745-8, 1991.
26. Sommer B, Burnashev N, Verdoorn TA, Keinänen K, Sakmann B, Seeburg PH. A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11:1651-1656, 1992.
27. Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351:742-744, 1991.
28. Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8(4):775-85, 1992.
29. Sommer B, Kohler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11-19, 1991.
30. Wisden W, Seeburg PH. A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 13:3582-3598, 1993.
31. Bahn S, Volk B, Wisden W. Kainate receptor gene expression in the developing rat brain. J Neurosci 14:5525-5547, 1994.
32. Paternain AV, Herrera MT, Nieto MA, Lerma J. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 20:196-205, 2000.
33. Huettner JE. Kainate receptors and synaptic transmission. Prog Neurobiol 70:387-407, 2003.
34. Wilding TJ, Huettner JE. Differential antagonism of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol Pharmacol 47:582-587, 1995.
35. Paternain AV, Morales M, Lerma J. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14:185-189, 1995.
36. Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388:182-186, 1997.
37. Vignes M, Collingridge GL. The synaptic activation of kainate receptors. Nature 388:179-182, 1997.
38. Pinheiro P, Mulle C. Kainate receptors. Cell Tissue Res 326(2):457-82, 2006.
39. Rodríguez Moreno A, Sihra TS. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. J Physiol 557:733-745, 2004.
40. Rodríguez Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20:1211-1218, 1998.
41. Cunha RA, Malva JO, Ribeiro JA. Kainate receptors coupled to Gi/Go proteins in the rat hippocampus. Mol Pharmacol 56:429-433, 1999.
42. Kullmann DM. Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity. Neuron 32(4):561-4, 2001.
43. Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4:481-495, 2003.
44. Nicoll RA, Schmitz D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6(11):863-76, 2005.
45. Frerking M, Malenka RC, Nicoll RA. Synaptic activation of kainate receptors on hippocampal interneurons. Nat Neurosci 1:479-486, 1998.
46. Cossart R, Esclapez M, Hirsch JC, Bernard C, Ben-Ari Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1(6):470-8, 1998.
47. Rodríguez Moreno A, López García JC, Lerma J. Two populations of kainate receptors with separate signalling mechanisms in hippocampal interneurons. Proc Natl Acad Sci USA 97:1293-1298, 2000.
48. Frerking M, Schmitz D, Zhou Q, Johansen J, Nicoll RA. Kainate receptors depress excitatory synaptic transmission at CA3-CA1 synapses in the hippocampus via a direct presynaptic action. J Neurosci 21:2958-2966, 2001.
49. Rodríguez Moreno A, Sihra TS. Metabotropic actions of kainate receptors in the CNS. J Neurochem 103:2121-2135, 2007.
50. Tzounopoulos T, Janz R, Sudhof TC, Nicoll RA, Malenka RC. A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21:837-845, 1998.
51. Rodríguez Moreno A, Sihra TS. Kainate receptors with a metabotropic modus operandi. Trends Neurosci 30(12):630-637, 2007.
52. Kobayashi K, ManabeT, Takahashi T. Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273:648-650, 1996.
53. Yokoi M, Kobayashi K, Manabe T y col. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 273:645-647, 1996.
54. Park Y, Jo J, Isaac JTR, Cho K. Long-term depression of kainate receptor-mediated synaptic transmission. Neuron 49:95-106, 2006.
55. Contractor A, Swanson GT, Heinemann SF. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29:209-216, 2001.
56. Lauri SE, Bortolotto ZA, Bleakman D y col. A critical role of a facilitatory presynaptic kainate receptors in mossy-fiber LTP. Neuron 32:697-709, 2001.
57. Bortolotto ZA, Clarke VR, Delany CM y col. Kainate receptors are involved in synaptic plasticity. Nature 402:297-301, 1999.
58. Schmitz D, Mellor J, Nicoll RA. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 291:1972-1976, 2001.
59. Schmitz D, Mellor J, Frerking M, Nicoll RA. Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 98(20):11003-8, 2001.
60. Schmitz D, Mellor J, Breustedt J, Nicoll RA. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 6:1058-1063, 2003.
61. Schmitz D, Frerking M, Nicoll RA. Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27:327-338, 2000.
62. Negrete Díaz JV, Sihra TS, Delgado García JM, Rodríguez Moreno A. Kainate receptor-mediated inhibition of glutamate release involves protein kinase A in the mouse hippocampus. J Neurophysiol 96(4):1829-37, 2006.
63. Negrete Díaz JV, Sihra TS, Delgado García JM, Rodríguez Moreno A. Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by Group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. J Neural Transm 114(11):1425-31, 2007.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008