siiclogo2c.gif (4671 bytes)
INHIBIDOR DE LA FIBRINOLISIS ACTIVADO POR TROMBINA (TAFI): NEXO ENTRE LA COAGULACION Y LA FIBRINOLISIS
(especial para SIIC © Derechos reservados)
bbbb
cccc

nn.jpg antovic9.jpg Autor:
Jovan P Antovic
Columnista Experto de SIIC

Institución:
Novo Nordisk ROSEE

Artículos publicados por Jovan P Antovic 

Recepción del artículo: 31 de agosto, 2005

Aprobación: 6 de septiembre, 2005

Primera edición: 7 de junio, 2021

Segunda edición, ampliada y corregida 7 de junio, 2021

Conclusión breve
El inhibidor de la fibrinólisis activado por trombina es una enzima que vincula los procesos de coagulación y fibrinólisis, y que podría desempeñar funciones importantes en patologías de origen inflamatorio.

Resumen

El inhibidor de la fibrinólisis activado por trombina (TAFI) es otro vínculo, descrito recientemente, entre la coagulación y la fibrinólisis. Su proenzima pro-TAFI (procarboxipeptidasa U, procarboxipeptidasa B plasmática) es una glucoproteína sintetizada en el hígado como un prepropéptido compuesto por 423 aminoácidos con un peso molecular de 55 kD. La pro-TAFI es activada por tripsina, plasmina y, más eficientemente, por el complejo trombina/trombomodulina, lo que genera la forma activa de la enzima TAFI (carboxipeptidasa U, B). El TAFI es altamente inestable, con una vida media de solamente 10 minutos a 37ºC debido a la inestabilidad proteolítica y a su degradación dependiente de la temperatura. El TAFI disminuye la fibrinólisis mediante el clivaje de arginina y lisina del extremo carboxiterminal de la fibrina y limita tanto la unión con el plasminógeno como la formación de plasmina. El TAFI es dependiente de la generación de trombina y, en consecuencia, los trastornos que involucran un aumento o una disminución de ésta (como la resistencia a la proteína C-reactiva, en el primero de los casos, y la hemofilia, en el segundo) pueden inducir cambios en los niveles de formas diferentes del TAFI y, mediante la influencia sobre la fibrinólisis, alterar la estabilidad de los coágulos. Además, se describió el papel del TAFI como potencial factor de riesgo de enfermedad cardiovascular. Para finalizar, se vio que el TAFI cambia en patologías asociadas con inflamación, en los trastornos lipídicos asociados con la aterosclerosis y en la curación o cicatrización de las heridas. Sin embargo, su papel definitivo sobre distintos trastornos debe aún ser probado. Es por ello que en el futuro cercano los objetivos de la investigación de esta molécula proteica deberían ser tanto la determinación de su papel como los esfuerzos necesarios para el desarrollo de métodos precisos y confiables para la determinación ex vivo de la forma activa de la enzima (TAFI).

Palabras clave
Inhibidor de la fibrinólisis activado por trombina (TAFI), carboxipeptidasa U, carboxipeptidasa plasmática B, coagulación, fibrinólisis

Clasificación en siicsalud
Artículos originales> Expertos del Mundo>
página www.siicsalud.com/des/expertos.php/76185

Especialidades
Principal: Bioquímica
Relacionadas: Diagnóstico por LaboratorioHematologíaMedicina Interna

Enviar correspondencia a:
Jovan P. Antovic MD, PhD. Novo Nordisk ROSEE, Zelezna cesta 18, 1000 Ljubljana, Eslovenia.

Patrocinio y reconocimiento
El apoyo financiero para esta investigation fue proporcionado por Coagulation Research Foundation, Karolinska Institute (Professor Margareta Blombäck); the Heart and Lung Foundation Sweden; Swedish Society for Medical Research; Baxter Sweden; American Diagnostica Inc.; Novo Nordisk, y the Eric K. Fernström Foundation.

THROMBIN ACTIVATABLE FIBRINOLYSIS INHIBITOR (TAFI): A LINK BETWEEN COAGULATION AND FIBRINOLYSIS

Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI) is another, recently described, link between coagulation and fibrinolysis. Its proenzyme pro-TAFI (procarboxypeptidase U, plasma procarboxypeptidase B) is a glycoprotein synthesized in the liver as a prepropeptide consisting of 423 amino acids with a molecular weight of 55 kD. Pro-TAFI is activated by trypsin, plasmin and thrombin, by most effectively by thrombin/thrombomodulin complex forming active form of enzyme – TAFI (carboxypeptidase U, B). TAFI is highly unstable, with a half-life of only 10 minutes at 37C due to proteolytic instability and temperature dependent degradation. TAFI down-regulates fibrinolysis by cleaveing off carboxy terminal arginine and lysine from fibrin and limits plasminogen binding as well as plasmin formation. TAFI is dependent on thrombin generation and therefore clinical conditions involving increased (APC resistance) or decreased thrombin generation (haemophilia) could induce changes in the levels of different forms of TAFI and by influencing fibrinolysis alter clot stability. Furthermore, the role of TAFI as potential risk factor for cardiovascular disease has been described. Finally, TAFI changes in conditions associated with inflammation, lipid disturbances in atherosclerosis and wound healing have been observed. However, the definitive role of TAFI in many clinical conditions has yet to be proven. That, together with efforts to develop accurate and precise methods for the ex vivo determination of TAFI (the active form of the enzyme) should be the main goals of TAFI investigation in the near future.


Key words
Thrombin activatable fibrinolysis inhibitor (TAFI), carboxypeptidase U, plasma carboxypeptidase B, coagulation, fibrinolysis

INHIBIDOR DE LA FIBRINOLISIS ACTIVADO POR TROMBINA (TAFI): NEXO ENTRE LA COAGULACION Y LA FIBRINOLISIS

(especial para SIIC © Derechos reservados)

Artículo completo
Hasta hace poco tiempo se consideraba que la coagulación y la fibrinólisis eran entidades separadas, vinculadas por la fibrina (producto final del sistema de la coagulación que sirve como sustrato para el sistema fibrinolítico). El hallazgo del inhibidor de la fibrinólisis activado por trombina (TAFI) aportó mayor conocimiento en este campo y presentó otro de los nexos entre estos dos sistemas.
Descubrimiento del TAFI, su estructura y nomenclatura
En 1989 se descubrió una actividad lábil de la carboxipeptidasa que interfería con la actividad de la carboxipeptidasa N y que no se hallaba presente en la sangre pero que aparecía luego de la formación del coágulo. Bajzar y col. purificaron la misma enzima y mostraron que podía ser activada por la trombina y que poseía capacidad para inhibir la fibrinólisis, por lo cual la denominaron inhibidor de la fibrinólisis activado por trombina (TAFI, por sus siglas en inglés).
Para esta enzima se han empleado diferentes nombres: carboxipeptidasa U (inestable), carboxipeptidasa R (la enzima que realiza el clivaje de los residuos de arginina) y carboxipeptidasa B plasmática (por las similitudes con la carboxipeptidasa B pancreática). La nomenclatura numérica más precisa (EC 3.4.17.3) no es conveniente para su empleo diario. Nosotros sugerimos la nomenclatura que se corresponde con la terminología ampliamente aceptada para las proenzimas del sistema de la coagulación y de sus formas activas y aportamos un vínculo entre el nombre y la función de la enzima, según lo sugerido por Bajzar y col. El precursor del TAFI (zimógeno) puede, de esta manera, denominarse pro-TAFI. Debido a que este inhibidor de la fibrinólisis es solamente funcional en su forma activa, no existen motivos para utilizar el término TAFIa. Nosotros sugerimos que el nombre TAFI se reserve para la forma activa de la enzima, y para la inactiva –la cual también se halla presente– sugerimos el uso del término TAFIi.



Síntesis, caracterización y purificación del TAFI
La pro-TAFI es una glucoproteína que se sintetiza en el hígado en forma de prepropéptido, compuesta por 423 aminoácidos y con un peso molecular de 55 kD. Se estableció que su concentración plasmática es de entre 4 y 15 μg/ml y que circula unida al plasminógeno. Recientemente, también se la identificó en las plaquetas.
La presencia de TAFI fue descrita en ratones, cerdos, cobayos, ratas y perros. No hemos detectado antígenos del TAFI en el líquido cefalorraquídeo y no existen datos sobre su presencia en otros líquidos corporales humanos.
La purificación de la pro-TAFI se basa en su elevada afinidad por el plasminógeno. El plasma se aplica a una columna de lisina-agarosa, la cual remueve el plasminógeno y las proteínas unidas a éste. Este proceso se continúa con cromatografía por afinidad sobre el complejo plasminógeno-agarosa y la posterior remoción de la pro-TAFI por parte el ácido épsilon aminocaproico. Con frecuencia se utiliza también la cromatografía mediante intercambio de iones.
Organización genómica y polimorfismo del TAFI
Se determinó que el gen de la pro-TAFI posee 48 kb de ADN genómico y que está compuesto por 11 exones y localizado en el cromosoma 13q14.11.
La deficiencia de pro-TAFI no fue descrita aún en los seres humanos, lo que podría indicar que es insignificante o, por el contrario, incompatible con la vida. Se ha logrado producir ratones con deficiencias para el gen que la codifica (ratones knock-out), sin que se observe mortalidad de los embriones. Estos ratones crecieron y se desarrollaron con normalidad, alcanzaron la adultez, fueron fértiles y sus embarazos fueron normales. La deficiencia de pro-TAFI no provocó un mayor incremento de sangrados o de hemorragias ni influyó sobre un modelo de trombosis.
Se describieron diversas formas del gen para la pro-TAFI. La sustitución alanina-treonina en la posición 147 no provocó cambios significativos en la función del TAFI. Se hallaron 11 ejemplos de polimorfismos (5 en el promotor: C-2599G, -23452G/1G, A-1690G, G-1102T y G-438A; 2 en la región 3’: C+1542G y T+1583A y 4 en la región 5’ no transcripta: -152A/G, -530C/T, -1053T/C y -1925T/C) que contribuyen de manera individual a una gran proporción del nivel antigénico del TAFI.
Las funciones de las diferentes formas del TAFI y su influencia sobre el nivel de TAFI, y en especial en relación con trastornos clínicos, no han sido establecidas con seguridad, aunque se vio que los niveles del TAFI se asociaron de manera significativa con los polimorfismos -438A/G y 1040C/T.
Activación de la pro-TAFI
La pro-TAFI es activada por tripsina, plasmina y trombina luego del clivaje en la posición Arg92 para producir un péptido de activación de 15 kD y la enzima activada de 35 kD. La trombina es una activadora débil de la pro-TAFI, con un valor de kcat de 0.0021 s-1. La plasmina tiene una eficacia ocho veces mayor para la activación de este propéptido. La trombomodulina potencia la activación de pro-TAFI dependiente de trombina en 1 250 veces, fundamentalmente a través del aumento en la kcat, lo que indica que el complejo trombina/trombomodulina debería ser el principal activador fisiológico de la pro-TAFI. Sin embargo, también se detectó que la actividad de este propéptido presenta un patrón bifásico, con pico inicial durante la coagulación y luego durante la fase fibrinolítica, lo que supone que tanto la trombina como la plasmina podrían generar TAFI.
Inactivación de TAFI
El TAFI es altamente inestable y posee una vida media de sólo 10 minutos a 37ºC. La inestabilidad de esta molécula ha sido atribuida a un clivaje proteolítico y a un proceso espontáneo dependiente de la temperatura, los cuales son consecuencia de la inestabilidad en su conformación.
TAFI y fibrinólisis
El TAFI produce el clivaje de la arginina y lisina carboxiterminal de la fibrina y limita la unión al plasminógeno y la fomación de plasmina. Podría también inactivar directamente la plasmina en concentraciones relativamente elevadas.



Figura 1. Presentación simplificada del papel de TAFI en la fibrinólisis (de Antovic61; con autorización de Clinical Laboratory, Heidelberg, Alemania).
Medición de las diferentes formas de TAFI
La inestabilidad de esta proteína hace que la medición de su forma activa sea dificultosa. Se desarrollaron diversos ensayos caseros y comerciales para la determinación de sus diferentes formas.
El antígeno total del TAFI se mide a través de anticuerpos monoclonales o policlonales con la técnica de ELISA. La variación dependiente del genotipo podría influir sobre los ensayos antigénicos. El polimorfismo Thr325IIe (1040C/T) podría provocar artefactos en los niveles antigénicos del TAFI y, en consecuencia, se debería prestar mucha atención y tener cautela al evaluar los valores de los antígenos de esta proteína.
La actividad del TAFI equivale a la cantidad de pro-TAFI activado. Se mide luego de la activación in vitro de pro-TAFI con el complejo trombina/trombomodulina. Es entonces cuando se determina el TAFI, con la utilización de furoilacroleil-alanil-arginina o luego de la liberación de ácido hipúrico a partir de hipuril-arginina, la cual se detecta mediante cromatografía líquida de alta resolción. También se hallan disponibles equipos comerciales para la determinación de pro-TAFI basados en el ensayo de microplacas cromogénicas.
La posibilidad de medición de la forma activa de la enzima está limitada por la inestabilidad del TAFI. En consecuencia, se determina a través de métodos indirectos con ensayos de lisis del coágulo iniciados con trombina o con factor tisular. El tiempo de lisis del coágulo y sus cambios luego de la adición del inhibidor de la carboxipeptidasa del tubérculo de la papa (PTCI, por sus siglas en inglés), un inhibidor específico del TAFI, representa la cantidad de actividad del TAFI y su capacidad para regular por disminución el proceso de la fibrinólisis. Se observó una buena correlación entre la actividad de pro-TAFI, el antígeno del TAFI y el ensayo mediante lisis del coágulo con la adición de este inhibidor (PTCI).
Hace poco tiempo desarrollamos un ensayo conocido como Potencial Hemostático Global (Overall Hemostatic Potential [OHP]). El Potencial Fibrinolítico Global (Overall Fibrinolitic Potential [OFP]) y la lisis del coágulo obtenida a partir de este ensayo se utilizaron para la estimación de la fibrinólisis dependiente del TAFI en diversos trastornos clínicos.
Un equipo comercial para la determinación de las formas activas e inactivas del complejo (TAFI y TAFIi) fue desarrollado recientemente, pero sus características aún no han sido estimadas por completo.
Papel del TAFI en la salud y en la enfermedad
Se informó que los valores del TAFI en personas normales varían ampliamente. Al ser medidos como antígenos, los niveles oscilaron entre el 41% y el 259% y no son diferentes entre hombres y mujeres, aunque se describió un incremento con la edad en el sexo femenino pero no en el masculino. A diferencia de la variación interindividual, los valores de TAFI en cada individuo son muy estables.
Debido a que la generación de TAFI es claramente dependiente de la trombina, los trastornos clínicos que comprenden un aumento o un descenso de ésta podrían inducir cambios en los valores de diferentes formas del TAFI.
Los vínculos entre la proteína C activada (APC) y la generación de TAFI son claros pero complejos. A través del TAFI y de la APC, el complejo trombina/trombomodulina desempeña un papel doble en la coagulación y en la fibrinólisis. Por un lado, induce la generación de APC, la cual tiene propiedades anticoagulantes y profibrinolíticas, mientras que por otro induce la formación de TAFI, el cual es antifibrinolítico.



Figura 2. Presentación simplificada del efecto de trombina/trombomodulina en la coagulación y fibrinólisis (de Antovic61; con autorización de Clinical Laboratory, Heidelberg, Alemania).
La formación defectuosa de trombina induce una tendencia al sangrado en pacientes con deficiencias heredadas de los factores de la coagulación. Las cantidades de TAFI podrían aportar una explicación aceptable para la regulación positiva de la fibrinólisis en pacientes con deterioro en la formación de trombina. Se observó que los coágulos formados a partir de plasmas con deficiencias en los factores VIII, IX, X y XI se lisan de manera prematura y que la suplementación con factores corrige este defecto y al mismo tiempo incrementa la tasa y la extensión de la activación de la carboxipeptidasa U (TAFI). El agregado de factor VIII restauró la fibrinólisis en plasmas provenientes de personas con hemofilia A. La inyección de rFVIIa normaliza la hemostasis general y la fibrinólisis dependiente del TAFI en pacientes con hemofilia A e inhibidores, mientras que la adición in vitro de rVIIa en plasmas con deficiencias de diversos factores normaliza la hemostasis global y, al menos en parte, la fibrinólisis dependiente del TAFI.
Las mediciones de las diferentes formas de TAFI indican que esta proteína per se podría contribuir además a la tendencia trombótica.
Los niveles elevados de los antígenos del TAFI fueron descritos como un factor de riesgo leve de trombosis venosa profunda. Se detectó una elevación de los niveles de pro-TAFI en pacientes con cardiopatía isquémica y angina estable y se halló un aumento en el antígeno del TAFI en venas y en especial en la sangre de las arterias coronarias en pacientes con enfermedad coronaria. Se identificó el incremento en el nivel de antígenos del TAFI como factor de riesgo para el angor; la incidencia del polimorfismo Ala 147Thr es mayor en estos pacientes. Además, se informó que en el accidente cerebrovascular isquémico agudo el valor de este antígeno se halla aumentado y que el nivel de su elevación se correlaciona con el grado de deterioro neurológico. Hemos hallado, recientemente, un aumento en el antígeno TAFI en la fase aguda del accidente cerebrovascular sin origen cardioembólico, con una tendencia descendente luego de 60 días del episodio agudo pero sin observarse normalización completa en sus valores.
Tanto el antígeno TAFI total como la pro-TAFI se hallan disminuidos en la coagulación intravascular diseminada debido al aumento en su consumo. El descenso observado en pacientes con infección e insuficiencia orgánica sugiere un papel en el mecanismo de la sepsis asociada con la coagulación intravascular diseminada y con insuficiencia orgánica.
La terapéutica antitrombótica afecta al TAFI. La heparina disminuye su generación, aumenta la fibrinólisis y reduce la estabilidad del coágulo que se halla en formación, mientras que no influye sobre la fibrinólisis de coágulos estables y maduros. El argatroban, al igual que el melagatran (inhibidores directos de la trombina) disminuye la generación de TAFI e incrementan la fibrinólisis.
Para finalizar, el papel del TAFI en la fibrinólisis podría potenciar los efectos del tratamiento y reducir el riesgo de sangrado en pacientes sometidos a trombólisis con fines terapéuticos. El PTCI mejoró de manera significativa la fibrinólisis inducida por el activador tisular del plasminógeno (tPA) sin presencia de efectos colaterales en un modelo de trombosis realizado en conejos.
Papel potencial del TAFI en la inflamación, cicatrización de las heridas y aterosclerosis
Un mecanismo inflamatorio puede influir en la expresión del TAFI. Algunos hallazgos indican que el TAFI desempeña un papel en la regulación de la inflamación, no solamente como reactante de fase aguda, lo cual fue descrito en algunos trastornos asociados con la inflamación.
Se detectó que en pacientes hiperlipidémicos con hipercolesterolemia los niveles de TAFI se hallan incrementados, mientras que el antígeno del TAFI y la pro-TAFI se encuentran aumentados en pacientes con obesidad y diabetes mellitus tipo 2. También se detectó una elevación del antígeno total del TAFI y de la pro-TAFI en pacientes con síndrome nefrótico. Las drogas hipolipemiantes, como fluvastatina y simvastatina, reducen significativamente los niveles del antígeno TAFI en presencia de patologías renales. Estos hallazgos podrían indicar que el TAFI ejercería un papel importante en la aparición de cambios aterotrombóticos en pacientes con alteraciones metabólicas asociadas con hiperlipidemia e hipercolesterolemia.
Poco tiempo atrás se describió otro papel potencial para el TAFI, al observarse un retraso en la curación de heridas cutáneas y de la cicatrización de anastomosis colónicas junto con una respuesta inflamatoria elevada en ratones knock-out.
Todavía no fue probado el papel definitivo del TAFI en diversos trastornos clínicos asociados con aumento o con disminución en la generación de trombina, en la enfermedad aterotrombótica vinculada con trastornos metabólicos ni su interferencia con la inflamación y la coagulación relacionadas con patologías cardiovasculares ni su potencial papel en la curación o cicatrización de las heridas.
El papel de la plasmina en la generación del TAFI es otra de las cuestiones sobre las cuales se necesitará hacer hincapié en el futuro.
Estas consideraciones, junto con los esfuerzos para desarrollar métodos precisos y confiables para la determinación ex vivo de TAFI (la forma activa de la enzima) deberían ser los objetivos principales de su investigación en el futuro próximo.
El autor manifiesta que: “Actualmente trabaja para una compañía farmacéutica, pero no tiene conflicto de intereses en relación con este trabajo”.



Bibliografía del artículo

  1. Hendriks D, Scharpe S, Van Sande M, Lommaert MP. A labile enzyme in fresh human serum interferes with the assay of carboxypeptidase N Clin Chem 1989; 35:177.
  2. Campbell W, Okada H. An arginine specific carboxypeptidase generated in blood during coagulation or inflammation which is unrelated to carboxypeptidase N or its subunits. Biochem Biophys Res Commun 1989; 162:933-9.
  3. Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 1995; 270:14477-84.
  4. Eaton DL, Malloy BE, Tsai SP, Henzel W, Drayna D. Isolation, molecular cloning, and partial characterization of a novel carboxypetidase B from human plasma. J Biol Chem 1991; 266:21833-8.
  5. Kluft C. Hallmark discoveries on TAFI date back to 1968. Thromb Haemost 2001; 86:719.
  6. Helle I. Fibrinolysis and coagulation. Effect of calcium and of coagulation on the lysis of fibrin clots. Scand J Haematol 1968; suppl 4:1-46.
  7. Hendriks D, Scharpe S, Van Sande M, Lommaert MP. Characterisation of a carboxypeptidase in human serum distinct from carboxypeptidase N. J Clin Chem Clin Biochem 1989; 27:277-85.
  8. Antovic J, Schulman S, Eelde A, Blombäck M. Total thrombin activatable fibrinolysis inhibitor (TAFI) antigen and pro-TAFI in patients with hemophilia A. Haemophilia 2001; 7:557-60.
  9. Bajzar L, Nesheim ME, Tracy PB. The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI-dependent. Blood 1996; 88:2093-100.
  10. Mosnier LO, Von dem Borne PA, Meijers JC, Bouma BN. Plasma TAFI levels influence the clot lysis time in healthy individuals in the presence of an intact intrinsic pathway of coagulation. Thromb Haemost 1998; 80:829-35.
  11. Wang W, Hendriks DF, Scharpe SS. Carboxypeptidase U, a plasma carboxypeptidase with high affinity for plasminogen. J Biol Chem 1994; 269:15937-44.
  12. Mosnier LO, Buijtenhuijs P, Marx PF, Meijers JC, Bouma BN. Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood 2003; 101:4844-6.
  13. Schatteman KA, Goossens FJ, Scharpe SS, Hendriks DF. Activation of plasma procarboxypeptidase U in different mammalian species points to a conserved pathway of inhibition of fibrinolysis. Thromb Haemost 1999; 82:1718-21.
  14. Marx PF, Wagenaar GT, Reijerkerk A, Tiekstra MJ, Van Rossum AG, Gebbink MF, Meijers JC. Characterization of mouse thrombin-activatable fibrinolysis inhibitor. Thromb Haemost 2000; 83:297-303.
  15. Kato T, Akatsu H, Sato T, Matsuo S, Yamamoto T, Campbell W, Hotta N, Okada N, Okada H. Molecular cloning and partial characterization of rat procarboxypeptidase R and carboxypeptidase N. Microbiol Immunol 2000; 44:719-28.
  16. Antovic JP, Hannerz J, Nekludov M, Blomback M. Thrombin activatable fibrinolysis inhibitor antigen could not be detected in cerebrospinal fluid. Thrombin activatable fibrinolysis inhibitor antigen could not be detected in cerebrospinal fluid. Thromb Haemost 2005; 93:178-9.
  17. Falk K, Bjorquist P, Falk P, Hedgren M, Ivarsson ML, Lanne B, Panfilov O, Holmdahl L. Antifibrinolytic proCPU is present in the peritoneal cavity during surgery. Scand J Clin Lab Invest 2003; 63:287-96.
  18. Boffa MB, Wang W, Bajzar L, Nesheim ME. Plasma and recombinant thrombin-actiable fibrinolysis inhibitor (TAFI) and activated TAFI compared with respect to glycosylation, thrombin/thrombomodulin-dependent activation, thermal stability, and enzymatic properties. J Biol Chem 1998; 273:2127-35.
  19. Zhao L, Morser J, Bajzar L, Nesheim M, Nagashima M. Identification and characterization of two thrombin-activatable fibrinolysis inhibitor isoforms. Thromb Haemost 1998; 80:949-55.
  20. Stromqvist M, Hansson L, Andersson JO, Johansson T, Edlund M, Enoksson M, Goossens F, Scharpe S, Hendriks D. Properties of recombinant human plasma procarboxypeptidase U produced in mammalian and insect cells. Clin Chim Acta 2004; 347:49-59.
  21. Broze GJ Jr, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood 1996; 88:3815-23.
  22. Marx PF, Hackeng TM, Dawson PE, Griffin JH, Meijers JC, Bouma BN. Inactivation of active thrombin-activable fibrinolysis inhibitor takes place by a process that involves conformational instability rather than proteolytic cleavage. J Biol Chem 2000; 275:12410-5.
  23. Boffa MB, Reid TS, Joo E, Nesheim ME, Koschinsky ML. Characterization of the gene encoding human TAFI (thrombin-activable fibrinolysis inhibitor; plasma procarboxypeptidase B). Biochemistry 1999; 38:6547-58.
  24. Tsai SP, Drayna D. The gene encoding human plasma carboxypeptidase R (CPB2) resides on chromosome 13. Genomics 1992; 14:549-50.
  25. Vanhoof G, Wauters J, Schatteman K, Hendriks D, Goossens F, Bossuyt P, Scharpe S. The gene for human carboxypeptidase U (CPU)--a proposed novel regulator of plasminogen activation--maps to 13q14.11. Genomics 1996; 38:454-5.
  26. Sato T, Miwa T, Akatsu H, Matsukawa N, Obata K, Okada N, Campbell W, Okada H. Pro-carboxypeptidase R is an acute phase protein in the mouse, whereas carboxypeptidase N is not. J Immunol 2000; 165:1053-8.
  27. Silveira A, Schatteman K, Goossens F, Moor E, Scharpe S, Stromqvist M, Hendriks D, Hamsten A. Plasma procarboxypeptidase U in men with symptomatic coronary artery disease. Thromb Haemost 2000; 84:364-8.
  28. Boffa MB, Hamill JD, Maret D, Brown D, Scott ML, Nesheim ME, Koschinsky ML. Acute phase mediators modulate TAFI gene expression in HepG2 cells. J Biol Chem 2003; 278:9250-7.
  29. Nagashima M, Yin ZF, Broze GJ Jr, Morser J. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficient mice. Front Biosci 2002; 7:d556-68.
  30. Nagashima M, Yin ZF, Zhao L, White K, Zhu Y, Lasky N, Halks-Miller M, Broze GJ Jr, Fay WP, Morser J. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life. J Clin Invest 2002; 109:101-10.
  31. Morange PE, Aillaud MF, Nicaud V, Henry M, Juhan-Vague I. Ala147Thr and C+1542G polymorphisms in the TAFI gene are not associated with a higher risk of venous thrombosis in FV Leiden carriers. Thromb Haemost 2001; 86:1583-4.
  32. Henry M, Aubert H, Morange PE, Nanni I, Alessi MC, Tiret L, Juhan-Vague I. Identification of polymorphisms in the promoter and the 3’ region of the TAFI gene: evidence that plasma TAFI antigen levels are strongly genetically controlled. Blood 2001; 97:2053-8.
  33. Franco RF, Fagundes MG, Meijers JC, Reitsma PH, Lourenco D, Morelli V, Maffei FH, Ferrari IC, Piccinato CE, Silva WA Jr, Zago MA. Identification of polymorphisms in the 5’-untranslated region of the TAFI gene: relationship with plasma TAFI levels and risk of venous thrombosis. Haematologica 2001; 86:510-7.
  34. Brouwers GJ, Vos HL, Leebeek FW, Bulk S, Schneider M, Boffa M, Koschinsky M, van Tilburg NH, Nesheim ME, Bertina RM, Gomez Garcia EB. A novel, possibly functional, single nucleotide polymorphism in the coding region of the thrombin-activatable fibrinolysis inhibitor (TAFI) gene is also associated with TAFI levels. Blood 2001; 98:1992-3.
  35. Schneider M, Boffa M, Stewart R, Rahman M, Koschinsky M, Nesheim M. Two naturally occurring variants of TAFI (Thr-325 and Ile-325) differ substantially with respect to thermal stability and antifibrinolytic activity of the enzyme. J Biol Chem 2002; 277:1021-30.
  36. Morange PE, Henry M, Frere C, Juhan-Vague I. Thr325IIe polymorphism of the TAFI gene does not influence the risk of myocardial infection. Blood 2002; 99:1878-9.
  37. Guimaraes AH, Van Tilburg NH, Vos HL, Bertina RM, Rijken DC. Association between thrombin activatable fibrinolysis inhibitor genotype and levels in plasma: comparison of different assays. Br J Haematol 2004; 124:659-65.
  38. Mao SS, Cooper CM, Wood T, Shafer JA, Gardell SJ. Characterization of plasmin mediated activation of plasma procarboxypetidase B – modulation by glycosaminoglycans. J Biol Chem 1999; 274:35046-52.
  39. Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 1996; 271:16603-8.
  40. Bouma BN, Marx PF, Mosnier LO, Meijers JCM. Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). Thromb Res 2001; 101:329-54.
  41. Marx PF, Dawson PE, Bouma BN, Meijers JC. Plasmin-mediated activation and inactivation of thrombin-activatable fibrinolysis inhibitor. Biochemistry 2002; 41:6688-96.
  42. Leurs J, Wissing BM, Nerme V, Schatteman K, Björquist P, Hendriks D. Different mechanisms contribute to the biphasic pattern of carboxypeptidase U TAFIa) generation during in vitro clot lysis in human plasma. Thromb Haemost 2003; 89:264-71.
  43. Kawamura T, Okada N, Okada H. Elastase from activated human neutrophils activates procarboxypeptidase R. Microbiol Immunol 2002; 46:225-30.
  44. Boffa MB, Bell R, Stevens WK, Nesheim ME. Roles of thermal instability and proteolytic cleavage in regulation of activated thrombin-activable fibrinolysis inhibitor. J Biol Chem 2000; 275:12868-78.
  45. Tan AK, Eaton DL. Activation and characterization of procarboxypeptidase B from human plasma. Biochemistry 1995; 34:5811-6.
  46. Komura H, Shimomura Y, Yumoto M, Katsuya H, Okada N, Okada H. Heat stability of carboxypeptidase R of experimental animals. Microbiol Immunol 2002; 46:217-23.
  47. Marx PF, Havik SR, Marquart JA, Bouma BN, Meijers JC. Generation and characterization of a highly stable form of activated thrombin-activable fibrinolysis inhibitor. J Biol Chem 2004; 279:6620-8.
  48. Marx PF, Havik SR, Bouma BN, Meijers JC. Role of isoleucine residues 182 and 183 in thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2005; 3:1293-300.
  49. Schatteman KA, Goossens FJ, Scharpe SS, Hendriks DF. Proteolytic activation of purified human procarboxypeptidase U. Clin Chim Acta 2000; 292:25-40.
  50. Christensen U. C-terminal lysine residues of fibrinogen fragments essential for binding to plasminogen. FEBS Lett 1985; 182:43-6.
  51. Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 1991; 30:1682-91.
  52. Fleury V, Angles-Cano E. Characterization of the binding of plasminogen to fibrin surface: the role of carboxyterminal lysines. Biochemistry 1991; 30:7630-8.
  53. Hoylaerters M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 1982; 257:2912-9.
  54. Sakharov DV, Rijken DC. Superficial accumulation of plasminogen during plasma clot lysis. Circulation 1995; 92:1883-90.
  55. Sakharov DV, Plow EF, Rijken DC. On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J Biol Chem 1997; 272:14477-82.
  56. Redlitz A, Tan AK, Eaton DL, Plow EF. Plasma carboxypeptidases as regulators of the plasminogen system. J Clin Invest 1995; 96:2534-8.
  57. Wang W, Boffa MB, Bajzar L, Walker JB, Nesheim ME. A study of the mechanism of inhibition of fibrinolysis by activated thrombin-activable fibrinolysis inhibitor. J Biol Chem 1998; 273:27176-81.
  58. Stewart RJ, Fredenburgh JC, Rischke JA, Bajzar L, Weitz JI. Thrombin-activable fibrinolysis inhibitor attenuates (DD)E-mediated stimulation of plasminogen activation by reducing the affinity of (DD)E for tissue plasminogen activator. A potential mechanism for enhancing the fibrin specificity of tissue plasminogen activator. J Biol Chem 2000; 275:36612-20.
  59. Marx PF. Thrombin-activatable fibrinolysis inhibitor. Curr Med Chem 2004; 11:2335-48.
  60. Valnickova Z, Enghild JJ. Human procarboxypeptidase U, or thrombin- activable fibrinolysis inhibitor, is a substrate for transglutaminases. J Biol Chem 1998; 42:27220-4.
  61. Antovic JP. Thrombin activatable fibrinolysis inhibitor (TAFI). A link between coagulation and fibrinolysis. Clin Lab 2003; 49:475-86.
  62. Swaisgood CM, Schmitt D, Eaton D, Plow EF. In vivo regulation of plasminogen function by plasma carboxypeptidase B. J Clin Invest 2002; 110:1275-82.
  63. Muto Y, Suzuki K, Sato E, Ishii H. Carboxypeptidase B inhibitors reduce tissue factor-induced renal microthrombi in rats. Eur J Pharmacol 2003; 461:181-9.
  64. Leurs J, Nerme V, Sim Y, Hendriks D. Carboxypeptidase U (TAFIa) prevents lysis from proceeding into the propagation phase through a threshold-dependent mechanism. J Thromb Haemost 2004; 2:416-23.
  65. Chetaille P, Alessi MC, Kouassi D, Morange PE, Juhan-Vague I. Plasma TAFI antigen variations in healthy subjects. Thromb Haemost 2000; 83:902-5.
  66. Stromqvist M, Schatteman K, Leurs J, Verkerk R, Andersson JO, Johansson T, Scharpe S, Hendriks D. Immunological assay for the determination of procarboxypeptidase U antigen levels in human plasma. Thromb Haemost 2001; 85:12-7.
  67. Van Tilburg NH, Rosendaal FR, Bertina RM. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 2000; 95:2855-9.
  68. Hendriks D, Wang W, Scharpe S, Lommaert MP, Van Sande M. Purification and characterization of a new arginine carboxypeptidase in human serum. Biochim Biophys Acta 1990; 1034:86-92.
  69. Schatteman KA, Goossens FJ, Scharpe SS, Neels HM, Hendriks DF. Assay of procarboxypeptidase U, a novel determinant of the fibrinolytic cascade, in human plasma. Clin Chem 1999; 45:807-13.
  70. Schatteman KA, Goossens FJ, Leurs J, Kasahara Y, Scharpe SS, Hendriks DF. Fast homogeneous assay for plasma procarboxypeptidase U. Clin Chem Lab Med 2001; 39:806-10.
  71. Van Thiel DH, George M, Fareed J. Low levels of thrombin activatable fibrinolysis inhibitor (TAFI) in patients with chronic liver disease. Thromb Haemost 2001; 85:667-70.
  72. Willemse J, Leurs J, Verkerk R, Hendriks D. Development of a fast kinetic method for the determination of carboxypeptidase U (TAFIa) using C-terminal arginine containing peptides as substrate. Anal Biochem 2005; 340:106-12.
  73. Neill EK, Stewart RJ, Schneider MM, Nesheim ME. A functional assay for measuring activated thrombin-activatable fibrinolysis inhibitor in plasma. Anal Biochem 2004; 330:332-41.
  74. Mosnier LO, Lisman T, Van den Berg HM, Nieuwenhuis HK, Meijers JC, Bouma BN. The defective down regulation of fibrinolysis in haemophilia A can be restored by increasing the TAFI plasma concentration. Thromb Haemost 2001; 86:1035-9.
  75. Guimaraes AH, Bertina RM, Rijken DC. A new functional assay of thrombin activatable fibrinolysis inhibitor. J Thromb Haemost 2005; 3:1284-92.
  76. He S, Antovic A, Blomback M. A Simple and Rapid Laboratory Method for Determination of Haemostasis Potential in Plasma II. Modifications for Use in Routine Laboratories and Research Work. Thromb Res 2001; 103:355-61.
  77. Antovic JP, Rafik Hamad R, Antovic A, Blombäck M, Bremme K. Does thrombin activatable fibrinolysis inhibitor (TAFI) contribute to impairment of fibrinolysis in patients with preeclampsia and/or intrauterine fetal growth retardation Thromb Haemost 2002; 88:644-7.
  78. Antovic JP, Antovic A, He S, Tengborn L, Blomback M. Overall haemostatic potential can be used for estimation of thrombin-activatable fibrinolysis inhibitor-dependent fibrinolysis in vivo and for possible follow-up of recombinant factor VIIa treatment in patients with inhibitors to factor VIII. Haemophilia 2002; 8:781-6.
  79. Antovic JP, Yngen M, Östenson CG, Antovic A, Wallen NH, Jorneskog G, Blombäck M. Thrombin activatable fibrinolysis inhibitor (TAFI) and hemostatic changes in patients with type I diabetes mellitus with and without microvascular complications. Blood Coag Fibrinolys 2003; in print.
  80. Greenfield RS, Antovic J, An J, Blombäck M, An SSA. Elevated TAFIa/ai antigen levels are a marker for hyperfibrinolytic state in hemophilia patients. Thrombos Haemost. (suppl) 16th International Congress on Fibrinolysis, Munich, Germany, 2002; S49.
  81. Meijers JC, Middeldorp S, Tekelenburg W, van den Ende AE, Tans G, Prins MH, Rosing J, Buller HR, Bouma BN. Increased fibrinolytic activity during use of oral contraceptives is counteracted by an enhanced factor XI-independent down regulation of fibrinolysis: a randomized cross-over study of two low-dose oral contraceptives. Thromb Haemost. 2000; 84:9-14.
  82. Chabloz P, Reber G, Boehlen F, Hohlfeld P, de Moerloose P. TAFI antigen and D-dimer levels during normal pregnancy and at delivery. Br J Haematol 2001; 115:150-2.
  83. Bajzar L, Fredenburgh JC, Nesheim M. The activated protein C-mediated enhancement of tissue –type plasminogen activator induced fibrinolysis in a cell free system. J Biol Chem 1990; 265:16948-54.
  84. De Fouw NJ, Haverkate F, Bertina RM. Protein C and fibrinolysis: a link between coagulation and fibrinolysis. Adv Exp Med Biol 1990; 281:235-43.
  85. Bajzar L, Kalafatis M, Simioni P, Tracy PB. An antifibrinolytic mechanism describing the prothrombotic effect associated with factor V Leiden. J Biol Chem 1996; 271:22949-52.
  86. Nowak-Gottl U, Binder M, Dubbers A, Kehrel B, Koch HG, Veltmann H, Vielhaber H. Arg506 to Gln mutation in the factor V gene causes poor fibrinolytic response in children after venous occlusion. Thromb Haemost 1997; 78(3):1115-8.
  87. Gresele P, Momi S, Berrettini M, Nenci GG, Schwarz HP, Semeraro N, Colucci M. Activated human protein C prevents thrombin-induced thromboembolism in mice. Evidence that activated protein C reduces intravascular fibrin accumulation through the inhibition of additional thrombin generation. J Clin Invest 1998; 101:667-76.
  88. Parker AC, Mundada LV, Schmaier AH, Fay WP. Factor VLeiden inhibits fibrinolysis in vivo. Circulation 2004; 110:3594-8.
  89. Colucci M, Simioni P, Piro D, Prandoni P, Pagnan A, Semeraro N. An antifibrinolytic effect associated with an anti-factor V antibody in a patient with severe thrombophilia. Haematologica 2003; 88:1383-9.
  90. Mosnier LO, Elisen MG, Bouma BN, Meijers JC. Protein C inhibitor regulates the thrombin-thrombomodulin complex in the up- and down regulation of TAFI activation. Thromb Haemost 2001; 86:1057-64.
  91. Mosnier LO, Meijers JC, Bouma BN. The role of protein S in the activation of thrombin activatable fibrinolysis inhibitor (TAFI) and regulation of fibrinolysis. Thromb Haemost 2001; 86:1040-6.
  92. Antovic JP, Blombäck M. Thrombin activatable fibrinolysis inhibitor (TAFI) antigen and TAFI activity in patients with APC resistance caused by factor V Leiden mutation. Thromb Res 2002; 106:59-62.
  93. Antovic A, Blomback M, Bremme K, Van Rooijen M, He S. Increased hemostasis potential persists in women with previous thromboembolism with or without APC resistance. J Thromb Haemost 2003; 1:2531-5.
  94. Kurosawa S, Stearns DJ, Jackson KW, Esmon CT. A 10-kDa cyanogens bromide fragment from the epidermal growth factor homology domain of rabbit thrombomodulin contains the primary thrombin binding site. J Biol Chem 1988; 263:5933-6.
  95. Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem 1998; 273:12135-9.
  96. Wang W, Nagashima M, Schneider M, Morser J, Nesheim M. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J Biol Chem 2000; 275:22942-7.
  97. Hall SW, Nagashima M, Zhao L, Morser J, Leung LL. Thrombin interacts with thrombomodulin, protein C, and thrombin-activatable fibrinolysis inhibitor via specific and distinct domains. J Biol Chem 1999; 274:25510-6.
  98. Mosnier LO, Meijers JC, Bouma BN. Regulation of fibrinolysis in plasma by TAFI and protein C is dependent on the concentration of thrombomodulin. Thromb Haemost 2001; 85:5-11.
  99. Bajzar L, Nesheim M, Morser J, Tracy PB. Both cellular and soluble forms of thrombomodulin inhibit fibrinolysis by potentiating the activation of thrombin-activable fibrinolysis inhibitor. J Biol Chem 1998; 273(5):2792-8.
  100. Dai L, Mitchell M, Savidge G, Alhaq A. The profibrinolytic effect of plasma thrombomodulin in factor XI deficiency and its implications in hemostasis. J Thromb Haemost 2004; 2:2200-4.
  101. Keultars IM, Hamulyak K, Hemker HC, Beguin S. The effect of DDAVP infusion on thrombin generation in platelet rich plasma of von Willebrand type 1 and mild hemophilia A patients. Thromb Haemost 2000; 84:638-42.
  102. Ramström G, Blombäck M. Tooth exctractions in hemophiliacs. Int J Oral Surg 1975; 4:1-17.
  103. Piot B, Sigaud-Fiks M, Huet P, Fressinaud E, Trossaert M, Mercier J. Management of dental extractions in patients with bleeding disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 93:247-50.
  104. Asakai R, Chung DW, Davie EW, Seligsohn U. Factor XI deficiency in Ashkenazi Jews in Israel. N Eng J Med 1991; 325:153-8.
  105. Berliner S, Horowitz I, Martinowitz U, Brenner B, Seligsohn U. Dental surgery in patients with severe factor XI deficiency without plasma replacement. Blood Coag Fibrin 1992; 3:465-8.
  106. Antovic JP, Antovic A. Does recombinant factor VIIa, apart from overall hemostasis, regulate TAFI dependent fibrinolysis In vitro analysis using overall hemostasis potential (OHP) assay. Thromb Haemost 2003; 90:620-7.
  107. Rao LVM, Rapaport SI. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci USA 1988; 85:6687-91.
  108. Broze GJ. The role of tissue factor pathway inhibitor in revised coagulation cascade. Semin Hematol 1992; 29:159-69.
  109. Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost 2001; 85:958-65.
  110. Von dem Borne PA, Bajzar L, Meijers JC, Nesheim ME, Bouma BN. Thrombin-mediated activation of factor XI results in a thrombin-activatable fibrinolysis inhibitor-dependent inhibition of fibrinolysis. J Clin Invest 1997; 99:2323-7.
  111. Rand MD, Lock JB, Van’t Veer C, Gaffney DP, Mann KG. Blood clotting in minimally altered whole blood. Blood 1996; 88:3432-45.
  112. Von dem Borne PAK, Meijers JCM, Bouma BN. Feedback activation of factor XI by thrombin in plasma results in additional format of thrombin that protects fibrin clots from fibrinolysis. Blood 1995; 86:3035-42.
  113. Koster T, Blann AD, Briet E, Vandenbroucke JP, Rosendaal FR. Role of clotting factor VIII in effect of von Willebrand factor on occurrence on deep vein thrombosis. Lancet 1995; 345:152-5.
  114. Vlieg AV, van der Linden IK; Bertina RM, Rosendaal FR. High levels of factor IX increase the risk of venous thrombosis. Blood 2000; 95:3678-82.
  115. Meijers JC, Tekelenburg WL, Bouma BN, Bertina RM, Rosendaal FR. High levels of coagulation factor XI as a risk factor for venous thrombosis. N Engl J Med 2000; 342:696-701.
  116. Libourel EJ, Bank I, Meinardi JR, Balj -Volkers CP, Koopman K, Van Pampus EC, Prins MH, Bller HR, Van Der Meer J. Co-segregation of thrombophilic disorders in factor V Leiden carriers; the contributions of factor VIII, factor XI, thrombin activatable fibrinolysis inhibitor and lipoprotein(a) to the absolute risk of venous thromboembolism. Haematologica 2002; 87:1068-73.
  117. Kostka H, Kuhlisch E, Schellong S, Siegert G. Polymorphisms in the TAFI gene and the risk of venous thrombosis. Clin Lab 2003; 49:645-7.
  118. Schroeder V, Kucher N, Kohler HP. Role of thrombin activatable fibrinolysis inhibitor (TAFI) in patients with acute pulmonary embolism. J Thromb Haemost 2003; 1:492-3.
  119. Juhan-Vague I, Renucci JF, Grimaux M, Morange PE, Gouvernet J, Gourmelin Y, Alessi MC. Thrombin-activatable fibrinolysis inhibitor antigen levels and cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2000; 20:2156-61.
  120. Santamaria A, Borrell M, Oliver A, Ortin R, Forner R, Coll I, Mateo J, Souto JC, Fontcuberta J. Association of functional thrombin-activatable fibrinolysis inhibitor (TAFI) with conventional cardiovascular risk factors and its correlation with other hemostatic factors in a Spanish population. Am J Hematol 2004; 76:348-52.
  121. Juhan-Vague I, Morange PE, Aubert H, Henry M, Aillaud MF, Alessi MC, Samnegard A, Hawe E, Yudkin J, Margaglione M, Di Minno G, Hamsten A, Humphries SE. Plasma thrombin-activatable fibrinolysis inhibitor antigen concentration and genotype in relation to myocardial infarction in the north and south of Europe. Arterioscler Thromb Vasc Biol 2002; 22:867-73.
  122. Juhan-Vague I, Morange PE; PRIME Study Group. Very high TAFI antigen levels are associated with a lower risk of hard coronary events: the PRIME Study. J Thromb Haemost 2003; 1:2243-4.
  123. Schroeder V, Chatterjee T, Mehta H, Windecker S, Pham T, Devantay N, Meier B, Kohler HP. Thrombin activatable fibrinolysis inhibitor (TAFI) levels in patients with coronary artery disease investigated by angiography. Thromb Haemost 2002; 88:1020-5.
  124. Morange PE, Juhan-Vague I, Scarabin PY, Alessi MC, Luc G, Arvelier D, Ferrieres J, Amouyel P, Evans A, Ducimetiere P. Association between TAFI antigen and Ala 147Thr polymorphism of the TAFI gene and the angina pectoris incidence. Thromb Haemost 2003; 89:554-60.
  125. Segev A, Hegele RA, Lau HK, Sparkes JD, Teitel JM, Chisholm RJ, Strauss BH. Thr325Ile polymorphism of the TAFI gene is related to TAFI antigen plasma levels and angiographic restenosis after percutaneous coronary interventions. Thromb Res 2004; 114:137-41.
  126. Montaner J, Ribo M, Monasterio J, Molina CA, Alvarez-Sabin J. Thrombin-activable fibrinolysis inhibitor levels in the acute phase of ischemic stroke. Stroke 2003; 34:1038-40.
  127. Antovic JP, Rooth E, Wallen H, Kaponides G, Von Arbin M, Wahlgren N, Stenmark J, Blombäck M. Is thrombin activatable fibrinolysis inhibitor a contributing factor for development of thrombotic complications in patients with ischemic stroke 18 International Congress on Thrombosis, Ljubljana 2004, OC 108.
  128. Akatsu H, Yamagata H, Chen Y, Miki T, Kamino K, Takeda M, Campbell W, Kondo I, Kosaka K, Yamamoto T, Okada H. TAFI polymorphisms at amino acids 147 and 325 are not risk factors for cerebral infarction. Br J Haematol 2004; 127:440-7.
  129. Post MS, Hendriks DF, Van Der Mooren MJ, Van Baal WM, Leurs JR, Emeis JJ, Kenemans P, Stehouwer CD. Oral oestradiol/trimegestone replacement reduces procarboxypeptidase U (TAFI): a randomized, placebo- controlled, 12-week study in early postmenopausal women. J Intern Med 2002; 251:245-51.
  130. Alacacioglu I, Ozcan MA, Alacacioglu A, Polat M, Yuksel F, Demirkan F, Piskin O, Ozgenc Y, Ozsan HG, Undar B. Plasma levels of thrombin activatable fibrinolysis inhibitor in normal and preeclamptic pregnant women. Thromb Res 2004; 114(3):155-9.
  131. Lisman T, Leebeek FW, Mosnier LO, Bouma BN, Meijers JC, Janssen HL, Nieuwenhuis HK, De Groot PG. Thrombin-activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated with increased plasma fibrinolysis. Gastroenterology 2001; 121:131-9.
  132. Watanabe R, Wada H, Watanabe Y, Sakakura M, Nakasaki T, Mori Y, Nishikawa M, Gabazza EC, Nobori T, Shiku H. Activity and antigen levels of thrombin-activatable fibrinolysis inhibitor in plasma of patients with disseminated intravascular coagulation. Thromb Res 2001; 104:1-6.
  133. Meijers JC, Oudijk EJ, Mosnier LO, Bos R, Bouma BN, Nieuwenhuis HK, Fijnheer R. Reduced activity of TAFI (thrombin-activatable fibrinolysis inhibitor) in acute promyelocytic leukaemia. Br J Haematol 2000; 108:518-23.
  134. Antovic JP, Schulman S, An SS, Greenfield RS, Blomback M. Does an enzyme other than thrombin contribute to unexpected changes in the levels of the different forms of thrombin activatable fibrinolysis inhibitor in patients with hemophilia A, hemophilia B and von Willebrand disease Scand J Clin Lab Invest 2004; 64:745-51.
  135. Lisman T, De Groot PG. Rebuttal to: Effects of heparin on TAFI-dependent inhibition of fibrinolysis. 2003; 1:200-1.
  136. Colucci M, Pentimone A, Binetti BM, Cramarossa M, Piro D, Semeraro N. Effect of heparin on TAFI-dependent inhibition of fibrinolysis: relative importance of TAFIa generated by clot-bound and fluid phase thrombin. Thromb Haemost 2002; 88:282-7.
  137. Nagashima H. Studies on the different modes of action of the anticoagulant protease inhibitors DX-9065a and argatroban. II. Effects on fibrinolysis. J Biol Chem 2002; 277:50445-9.
  138. Hashimoto M, Yamashita T, Oiwa K, Watanabe S, Giddings JC, Yamamoto J. Enhancement of endogenous plasminogen activator-induced thrombolysis by argatroban and APC and its control by TAFI, measured in an arterial thrombolysis model in vivo using rat mesenteric arterioles. Thromb Haemost 2002; 87:110-3.
  139. Mattsson C, Bjorkman JA, Abrahamsson T, Nerme V, Schatteman K, Leurs J, Scharpe S, Hendriks D. Local proCPU (TAFI) activation during thrombolytic treatment in a dog model of coronary artery thrombosis can be inhibited with a direct, small molecule thrombin inhibitor (melagatran). Thromb Haemost 2002; 87:557-62.
  140. Klement P, Liao P, Bajzar L. A novel approach to arterial thrombolysis. Blood 1999; 94:2735-43.
  141. Nagashima M, Werner M, Wang M, Zhao L, Light DR, Pagila R, Morser J, Verhallen P. An inhibitor of activated thrombin-activatable fibrinolysis inhibitor potentiates tissue-type plasminogen activator-induced thrombolysis in a rabbit jugular vein thrombolysis model. Thromb Res 2000; 98:333-42.
  142. Minnema MC, Friederich PW, Levi M, von dem Borne PA, Mosnier LO, Meijers JC, Biemond BJ, Hack CE, Bouma BN, ten Cate H. Enhancement of rabbit jugular vein thrombolysis by neutralization of factor XI. In vivo evidence for a role of factor XI as an anti-fibrinolytic factor. J Clin Invest 1998; 101:10-4.
  143. Myles T, Nishimura T, Yun TH, Nagashima M, Morser J, Patterson AJ, Pearl RG, Leung LL. Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 2003; 278:51059-67.
  144. Asai S, Sato T, Tada T, Miyamoto T, Kimbara N, Motoyama N, Okada H, Okada N. Absence of procarboxypeptidase R induces complement-mediated lethal inflammation in lipopolysaccharide-primed mice. J Immunol 2004; 173:4669-74.
  145. Saibeni S, Bottasso B, Spina L, Bajetta M, Danese S, Gasbarrini A, De Franchis R, Vecchi M. Assessment of thrombin-activatable fibrinolysis inhibitor (TAFI) plasma levels in inflammatory bowel diseases. Am J Gastroenterol 2004; 99:1966-70.
  146. Donmez A, Aksu K, Celik HA, Keser G, Cagirgan S, Omay SB, Inal V, Aydin HH, Tombuloglu M, Doganavsargil E. Thrombin activatable fibrinolysis inhibitor in Behcet's disease. Thromb Res 2005; 115:287-92.
  147. Tobu M, Iqbal O, Fareed D, Chatha M, Hoppensteadt D, Bansal V, Fareed J. Erythropoietin-induced thrombosis as a result of increased inflammation and thrombin activatable fibrinolytic inhibitor. Clin Appl Thromb Hemost 2004; 10:225-32.
  148. So AK, Varisco PA, Kemkes-Matthes B, Herkenne-Morard C, Chobaz-Peclat V, Gerster JC, Busso N. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 2003; 1:2510-5.
  149. Puccetti L, Pasqui AL, Pastorelli M, Bova G, Cercignani M, Palazzuoli A, Auteri A, Bruni F. Different mechanisms of fibrinolysis impairment among dyslipidemic subjects. Int J Clin Pharmacol Res 2001; 21:147-55.
  150. Hori Y, Gabazza EC, Yano Y, Katsuki A, Suzuki K, Adachi Y, Sumida Y. Insulin resistance is associated with increased circulating level of thrombin-activatable fibrinolysis inhibitor in type 2 diabetic patients. J Clin Endocrinol Metab 2002, 87:660-5.
  151. Yano Y, Kitagawa N, Gabazza EC, Morioka K, Urakawa H, Tanaka T, Katsuki A, Araki-Sasaki R, Hori Y, Nakatani K, Taguchi O, Sumida Y, Adachi Y. Increased plasma thrombin-activatable fibrinolysis inhibitor levels in normotensive type 2 diabetic patients with microalbuminuria. J Clin Endocrinol Metab 2003; 88:736-41.
  152. Malyszko J, Malyszko JS, Mysliwiec M. Markers of endothelial cell injury and thrombin activatable fibrinolysis inhibitor in nephrotic syndrome. Blood Coagul Fibrinolysis 2002; 13:615-21.
  153. Hryszko T, Malyszko J, Malyszko JS, Brzosko S, Pawlak K, Mysliwiec M. A possible role of thrombin-activatable fibrinolysis inhibitor in disturbances of fibrinolytic system in renal transplant recipients. Nephrol Dial Transplant 2001; 16:1692-6.
  154. Malyszko J, Malyszko JS, Hryszko T, Mysliwiec M. Thrombin-activatable fibrinolysis inhibitor in kidney transplant recipient with dyslipidemia. Transplant Proc 2003; 35:2219-21.
  155. Malyszko J, Malyszko JS, Mysliwiec M. Fluvastin therapy affects TAFI concentration in kidney transplant recipients. Transpl Int 2003; 16:53-7.
  156. Malyszko J, Malyszko JS, Hryszko T, Mysliwiec M. Simvastain affects TAFI and thrombomodulin in CAPD patients. Thromb Haemost 2001; 86:930-1.
  157. Hryszko T, Malyszko J, Malyszko JS, Brzosko S, Mysliwiec M. Patients on peritoneal dialysis but not on hemodialysis have elevated concentration and activity of thrombin-activatable fibrinolysis inhibitor. Thromb Res 2001; 104:233-8.
  158. Malyszko J, Malyszko JS, Hryszko T, Mysliwiec M. Thrombin activatable fibrinolysis inhibitor (TAFI) and markers of endothelial cell injury in dialyzed patients with diabetic nephropathy. Thromb Haemost 2004; 91:480-6.
  159. Aubert H, Frere C, Aillaud MF, Morange PE, Juhan-Vague I, Alessi MC. Weak and non-independent association between plasma TAFI antigen levels and the insulin resistance syndrome. J Thromb Haemost 2003; 1:791-7.
  160. Te Velde EA, Wagenaar GT, Reijerkerk A, Roose-Girma M, Borel Rinkes IH, Voest EE, Bouma BN, Gebbink MF, Meijers JC. Impaired healing of cutaneous wounds and colonic anastomoses in mice lacking thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2003; 1:2087-96.
  161. Boffa MB. TAFI and wound healing: closing a knowledge gap. J Thromb Haemost 2003; 1:2075-7.
© Está  expresamente prohibida la redistribución y la redifusión de todo o parte de los  contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin  previo y expreso consentimiento de SIIC

anterior.gif (1015 bytes)

 


Bienvenidos a siicsalud
Acerca de SIIC Estructura de SIIC


Sociedad Iberoamericana de Información Científica (SIIC)
Arias 2624, (C1429DXT), Buenos Aires, Argentina atencionallector@siicsalud.com;  Tel: +54 11 4702-1011 / 4702-3911 / 4702-3917
Casilla de Correo 2568, (C1000WAZ) Correo Central, Buenos Aires.
Copyright siicsalud© 1997-2024, Sociedad Iberoamericana de Información Científica(SIIC)